
Source: Pixabay
In the last few decades, significant advances have been achieved in the area of audio recognition. A lot of research is ongoing globally to recognize audio data or speech using Deep Learning. The most common use case in this field is converting audio to spectrograms and vice versa.
Audio in its raw form is usually a wave and to capture that using a data structure, we need to have a huge array of amplitudes even for a very short audio clip. Although it depends on the sampling rate of the sound wave, this structured data conversion for any audio wave is very voluminous even for low sampling rates. So it becomes a problem to store and computationally very expensive to do even simple calculations on such data.
One of the best economical alternatives to this is using spectrograms. Spectrograms are created by doing Fourier or Short Time Fourier Transforms on sound waves. There are various kinds of spectrograms, but the ones we will be using are called MFCC spectrograms. To put it in simple terms, a spectrogram is a way to visually encapsulate audio data. It is a graph on a 2-D plane where the X-axis represents time and the Y-axis represents Mel Coefficients. But since it is continuous on a 2-D plane, we can treat this as an image.
The objective here is to build an Artificial Neural Network that can look at Mel or MFCC spectrograms of audio files and classify them into the 10 classes that represent the 10 unique digits in the spoken Engilsh language. The audio files are recordings of different speakers uttering a particular digit and the corresponding class to be predicted is the digit itself.
The dataset we will use is the Audio MNIST dataset, which has audio files (having .wav extension) stored in 10 different folders. Each folder consists of these digits spoken by a particular speaker.
Librosa: Librosa is a Python package that helps in dealing with audio data. librosa.display visualizes and displays the audio data using Matplotlib. Similarly, there exists a collection of submodules under librosa that provides various other functionalities. Run the command in the next cell to install the library.
IPython.display: Display is a public API to display the tools available in Ipython. In this case study, we will create an audio object to display the digits in the Audio MNIST data. tqdm: tqdm is a Python package that allows us to add a progress bar to our application. This package will help us in iterating over the audio data. !pip install librosa
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/ Requirement already satisfied: librosa in /usr/local/lib/python3.7/dist-packages (0.8.1) Requirement already satisfied: joblib>=0.14 in /usr/local/lib/python3.7/dist-packages (from librosa) (1.1.0) Requirement already satisfied: scikit-learn!=0.19.0,>=0.14.0 in /usr/local/lib/python3.7/dist-packages (from librosa) (1.0.2) Requirement already satisfied: decorator>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from librosa) (4.4.2) Requirement already satisfied: numba>=0.43.0 in /usr/local/lib/python3.7/dist-packages (from librosa) (0.56.0) Requirement already satisfied: resampy>=0.2.2 in /usr/local/lib/python3.7/dist-packages (from librosa) (0.3.1) Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.7/dist-packages (from librosa) (21.3) Requirement already satisfied: soundfile>=0.10.2 in /usr/local/lib/python3.7/dist-packages (from librosa) (0.10.3.post1) Requirement already satisfied: numpy>=1.15.0 in /usr/local/lib/python3.7/dist-packages (from librosa) (1.21.6) Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.7/dist-packages (from librosa) (1.7.3) Requirement already satisfied: pooch>=1.0 in /usr/local/lib/python3.7/dist-packages (from librosa) (1.6.0) Requirement already satisfied: audioread>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from librosa) (2.1.9) Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from numba>=0.43.0->librosa) (4.12.0) Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (from numba>=0.43.0->librosa) (57.4.0) Requirement already satisfied: llvmlite<0.40,>=0.39.0dev0 in /usr/local/lib/python3.7/dist-packages (from numba>=0.43.0->librosa) (0.39.0) Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>=20.0->librosa) (3.0.9) Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.7/dist-packages (from pooch>=1.0->librosa) (2.23.0) Requirement already satisfied: appdirs>=1.3.0 in /usr/local/lib/python3.7/dist-packages (from pooch>=1.0->librosa) (1.4.4) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pooch>=1.0->librosa) (3.0.4) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pooch>=1.0->librosa) (2022.6.15) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pooch>=1.0->librosa) (1.24.3) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pooch>=1.0->librosa) (2.10) Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn!=0.19.0,>=0.14.0->librosa) (3.1.0) Requirement already satisfied: cffi>=1.0 in /usr/local/lib/python3.7/dist-packages (from soundfile>=0.10.2->librosa) (1.15.1) Requirement already satisfied: pycparser in /usr/local/lib/python3.7/dist-packages (from cffi>=1.0->soundfile>=0.10.2->librosa) (2.21) Requirement already satisfied: typing-extensions>=3.6.4 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->numba>=0.43.0->librosa) (4.1.1) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->numba>=0.43.0->librosa) (3.8.1)
# For Audio Preprocessing
import librosa
import librosa.display as dsp
from IPython.display import Audio
# For Data Preprocessing
import pandas as pd
import numpy as np
import os
# For Data Visualization
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
#The data is provided as a zip file
import zipfile
import os
sns.set_style("dark")
from google.colab import drive
drive.mount('/content/drive')
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
path = '/content/drive/MyDrive/Audio_MNIST_Archive.zip'
#The data is provided as a zip file so we need to extract the files from the zip file
with zipfile.ZipFile(path, 'r') as zip_ref:
zip_ref.extractall()
The below function called "get_audio" takes a digit as an argument and plots the audio wave and returns the audio for a given digit.
Let's understand the functioning of some of the new functions used to create the get_audio() function.
.wav: .wav is a file format like .csv which stores the raw audio format. We will load the .wav file using the librosa package. dsp.waveshow(): It visualizes the waveform in the time domain. This method creates a plot that alternates between a raw samples-based view of the signal and an amplitude-envelope view of the signal. The "sr" parameter is the sampling rate, i.e., samples per second. Audio(): From the Ipython package, we can create an audio object. def get_audio(digit = 0):
# Audio Sample Directory
sample = np.random.randint(1, 10)
# Index of Audio
index = np.random.randint(1, 5)
# Modified file location
if sample < 10:
file = f"/content/data/0{sample}/{digit}_0{sample}_{index}.wav"
else:
file = f"/content/data/{sample}/{digit}_{sample}_{index}.wav"
# Get Audio from the location
# Audio will be automatically resampled to the given rate (default sr = 22050)
data, sample_rate = librosa.load(file)
# Plot the audio wave
dsp.waveshow(data, sr = sample_rate)
plt.show()
# Show the widget
return Audio(data = data, rate = sample_rate)
# Show the audio and plot of digit 0
get_audio(0)
# Show the audio and plot of digit 1
get_audio(1)
# Show the audio and plot of digit 2
get_audio(2)
# Show the audio and plot of digit 3
get_audio(3)
# Show the audio and plot of digit 4
get_audio(4)
# Show the audio and plot of digit 5
get_audio(5)
# Show the audio and plot of digit 6
get_audio(6)
# Show the audio and plot of digit 7
get_audio(7)
# Show the audio and plot of digit 8
get_audio(8)
# Show the audio and plot of digit 9
get_audio(9)
Observations:
A spectrogram is a visual way of representing the signal strength or “loudness” of a signal over time at various frequencies or time steps present in a particular waveform. A spectrogram gives a detailed view of our audio. It represents amplitude, frequency, and time in a single plot.
Since spectrograms are continuous plots, they can be interpreted as an image. Different spectrograms have different attributes on their axes and they are usually different to interpret. In a Research and Development scenario, we make use of a vocoder, which is an encoder that converts spectrograms back to audio using parameters learned by machine learning. One great vocoder is the WaveNet vocoder which is used in almost all Text-to-Speech architectures.
Here, we will be using MFCC spectrograms, which are also called Mel spectrograms.
# A function which returns audio file for a mentioned digit
def get_audio_raw(digit = 0):
# Audio Sample Directory
sample = np.random.randint(1, 10)
# Index of Audio
index = np.random.randint(1, 5)
# Modified file location
if sample < 10:
file = f"/content/data/0{sample}/{digit}_0{sample}_{index}.wav"
else:
file = f"/content/data/{sample}/{digit}_{sample}_{index}.wav"
# Get Audio from the location
data, sample_rate = librosa.load(file)
# Return audio
return data, sample_rate
Mel-frequency cepstral coefficients (MFCCs) Feature Extraction
MFCCs are usually the final features used in many machine learning models trained on audio data. They are usually a set of mel coefficients defined for each time step through which the raw audio data can be encoded. So for example, if we have an audio sample extending for 30 time steps, and we are defining each time step by 40 Mel Coefficients, our entire sample can be represented by 40 * 30 Mel Coefficients. And if we want to create a Mel Spectrogram out of it, our spectrogram will resemble a 2-D array of 40 horizontal rows and 30 vertical columns.
In this time step, we will first extract the Mel Coefficents for each audio file and add them to our dataset.
extract_features : Returns the MFCC extracted features for an audio file. process_and_create_dataset : Iterate through the audio of each digit, extract the features using the extract_features() function, and append the data into a DataFrame. Creating a function that extracts the data from audio files
# Will take an audio file as input and return extracted features using MEL_FREQUENCY CEPSTRAL COEFFICIENT as the output
def extract_features(file):
# Load audio and its sample rate
audio, sample_rate = librosa.load(file)
# Extract features using mel-frequency coefficient
extracted_features = librosa.feature.mfcc(y = audio,
sr = sample_rate,
n_mfcc = 40)
# Scale the extracted features
extracted_features = np.mean(extracted_features.T, axis = 0)
# Return the extracted features
return extracted_features
def preprocess_and_create_dataset():
# Path of the folder where the audio files are present
root_folder_path = "/content/data/"
# Empty List to create dataset
dataset = []
# Iterating through folders where each folder has the audio of each digit
for folder in tqdm(range(1, 11)):
if folder < 10:
# Path of the folder
folder = os.path.join(root_folder_path, "0" + str(folder))
else:
folder = os.path.join(root_folder_path, str(folder))
# Iterate through each file of the present folder
for file in tqdm(os.listdir(folder)):
# Path of the file
abs_file_path = os.path.join(folder, file)
# Pass path of file to the extracted_features() function to create features
extracted_features = extract_features(abs_file_path)
# Class of the audio, i.e., the digit it represents
class_label = file[0]
# Append a list where the feature represents a column and class of the digit represents another column
dataset.append([extracted_features, class_label])
# After iterating through all the folders, convert the list to a DataFrame
return pd.DataFrame(dataset, columns = ['features', 'class'])
Now. let's create the dataset using the defined function
# Create the dataset by calling the function
dataset = preprocess_and_create_dataset()
0%| | 0/10 [00:00<?, ?it/s] 0%| | 0/500 [00:00<?, ?it/s] 0%| | 1/500 [00:00<00:52, 9.54it/s] 0%| | 2/500 [00:00<00:59, 8.33it/s] 1%| | 3/500 [00:00<01:04, 7.70it/s] 1%| | 4/500 [00:00<01:08, 7.24it/s] 1%| | 5/500 [00:00<01:14, 6.69it/s] 1%| | 6/500 [00:00<01:08, 7.20it/s] 1%|▏ | 7/500 [00:00<01:08, 7.15it/s] 2%|▏ | 8/500 [00:01<01:05, 7.50it/s] 2%|▏ | 9/500 [00:01<01:04, 7.62it/s] 2%|▏ | 10/500 [00:01<01:07, 7.23it/s] 2%|▏ | 11/500 [00:01<01:11, 6.83it/s] 2%|▏ | 12/500 [00:01<01:08, 7.08it/s] 3%|▎ | 13/500 [00:01<01:06, 7.32it/s] 3%|▎ | 14/500 [00:01<01:07, 7.19it/s] 3%|▎ | 16/500 [00:02<00:58, 8.32it/s] 3%|▎ | 17/500 [00:02<00:56, 8.55it/s] 4%|▎ | 18/500 [00:02<00:57, 8.38it/s] 4%|▍ | 20/500 [00:02<00:51, 9.24it/s] 4%|▍ | 21/500 [00:02<00:53, 8.90it/s] 4%|▍ | 22/500 [00:02<00:54, 8.77it/s] 5%|▍ | 24/500 [00:02<00:50, 9.49it/s] 5%|▌ | 25/500 [00:03<00:52, 9.04it/s] 5%|▌ | 27/500 [00:03<00:47, 9.98it/s] 6%|▌ | 29/500 [00:03<00:44, 10.67it/s] 6%|▌ | 31/500 [00:03<00:43, 10.80it/s] 7%|▋ | 33/500 [00:03<00:40, 11.60it/s] 7%|▋ | 35/500 [00:03<00:38, 12.15it/s] 7%|▋ | 37/500 [00:04<00:41, 11.29it/s] 8%|▊ | 39/500 [00:04<00:44, 10.47it/s] 8%|▊ | 41/500 [00:04<00:49, 9.20it/s] 8%|▊ | 42/500 [00:04<00:52, 8.71it/s] 9%|▊ | 43/500 [00:04<00:55, 8.28it/s] 9%|▉ | 44/500 [00:05<00:59, 7.64it/s] 9%|▉ | 45/500 [00:05<01:02, 7.24it/s] 9%|▉ | 46/500 [00:05<01:06, 6.82it/s] 9%|▉ | 47/500 [00:05<01:07, 6.67it/s] 10%|▉ | 48/500 [00:05<01:07, 6.70it/s] 10%|▉ | 49/500 [00:05<01:05, 6.90it/s] 10%|█ | 50/500 [00:05<01:02, 7.18it/s] 10%|█ | 51/500 [00:06<01:05, 6.80it/s] 10%|█ | 52/500 [00:06<01:02, 7.12it/s] 11%|█ | 53/500 [00:06<01:01, 7.30it/s] 11%|█ | 54/500 [00:06<00:59, 7.53it/s] 11%|█ | 56/500 [00:06<00:53, 8.23it/s] 11%|█▏ | 57/500 [00:06<00:58, 7.51it/s] 12%|█▏ | 58/500 [00:07<01:01, 7.16it/s] 12%|█▏ | 59/500 [00:07<01:05, 6.75it/s] 12%|█▏ | 60/500 [00:07<01:05, 6.74it/s] 12%|█▏ | 61/500 [00:07<01:02, 7.07it/s] 13%|█▎ | 63/500 [00:07<00:52, 8.25it/s] 13%|█▎ | 65/500 [00:07<00:48, 8.99it/s] 13%|█▎ | 66/500 [00:07<00:47, 9.14it/s] 14%|█▎ | 68/500 [00:08<00:43, 9.94it/s] 14%|█▍ | 69/500 [00:08<00:43, 9.80it/s] 14%|█▍ | 70/500 [00:08<00:44, 9.59it/s] 14%|█▍ | 71/500 [00:08<00:46, 9.13it/s] 14%|█▍ | 72/500 [00:08<00:51, 8.30it/s] 15%|█▍ | 73/500 [00:08<00:54, 7.87it/s] 15%|█▍ | 74/500 [00:08<00:53, 7.92it/s] 15%|█▌ | 75/500 [00:09<00:53, 8.01it/s] 15%|█▌ | 76/500 [00:09<00:54, 7.80it/s] 15%|█▌ | 77/500 [00:09<01:00, 6.94it/s] 16%|█▌ | 79/500 [00:09<00:51, 8.18it/s] 16%|█▌ | 80/500 [00:09<00:51, 8.20it/s] 16%|█▌ | 81/500 [00:09<00:53, 7.89it/s] 16%|█▋ | 82/500 [00:09<00:53, 7.86it/s] 17%|█▋ | 83/500 [00:10<00:59, 7.01it/s] 17%|█▋ | 84/500 [00:10<00:57, 7.27it/s] 17%|█▋ | 85/500 [00:10<01:00, 6.87it/s] 17%|█▋ | 86/500 [00:10<00:56, 7.28it/s] 17%|█▋ | 87/500 [00:10<00:58, 7.10it/s] 18%|█▊ | 88/500 [00:10<00:57, 7.21it/s] 18%|█▊ | 89/500 [00:10<00:55, 7.40it/s] 18%|█▊ | 90/500 [00:11<00:56, 7.27it/s] 18%|█▊ | 91/500 [00:11<00:56, 7.18it/s] 18%|█▊ | 92/500 [00:11<00:53, 7.60it/s] 19%|█▊ | 93/500 [00:11<00:51, 7.89it/s] 19%|█▉ | 94/500 [00:11<00:53, 7.63it/s] 19%|█▉ | 96/500 [00:11<00:45, 8.81it/s] 19%|█▉ | 97/500 [00:11<00:46, 8.64it/s] 20%|█▉ | 99/500 [00:12<00:41, 9.67it/s] 20%|██ | 100/500 [00:12<00:43, 9.21it/s] 20%|██ | 101/500 [00:12<00:44, 8.99it/s] 20%|██ | 102/500 [00:12<00:46, 8.63it/s] 21%|██ | 103/500 [00:12<00:49, 8.08it/s] 21%|██ | 104/500 [00:12<00:50, 7.87it/s] 21%|██ | 105/500 [00:12<00:47, 8.33it/s] 21%|██ | 106/500 [00:12<00:46, 8.45it/s] 21%|██▏ | 107/500 [00:13<00:47, 8.29it/s] 22%|██▏ | 108/500 [00:13<00:46, 8.39it/s] 22%|██▏ | 109/500 [00:13<00:45, 8.68it/s] 22%|██▏ | 110/500 [00:13<00:50, 7.68it/s] 22%|██▏ | 111/500 [00:13<00:53, 7.28it/s] 22%|██▏ | 112/500 [00:13<00:53, 7.21it/s] 23%|██▎ | 113/500 [00:13<00:52, 7.38it/s] 23%|██▎ | 114/500 [00:14<00:55, 6.95it/s] 23%|██▎ | 115/500 [00:14<00:51, 7.51it/s] 23%|██▎ | 116/500 [00:14<00:53, 7.16it/s] 23%|██▎ | 117/500 [00:14<00:54, 7.04it/s] 24%|██▎ | 118/500 [00:14<00:49, 7.65it/s] 24%|██▍ | 119/500 [00:14<00:47, 7.97it/s] 24%|██▍ | 120/500 [00:14<00:48, 7.90it/s] 24%|██▍ | 121/500 [00:14<00:48, 7.89it/s] 24%|██▍ | 122/500 [00:15<00:47, 8.00it/s] 25%|██▍ | 123/500 [00:15<00:46, 8.11it/s] 25%|██▍ | 124/500 [00:15<00:49, 7.52it/s] 25%|██▌ | 125/500 [00:15<00:49, 7.51it/s] 25%|██▌ | 126/500 [00:15<00:48, 7.66it/s] 25%|██▌ | 127/500 [00:15<00:47, 7.84it/s] 26%|██▌ | 128/500 [00:15<00:49, 7.59it/s] 26%|██▌ | 129/500 [00:15<00:48, 7.72it/s] 26%|██▌ | 130/500 [00:16<00:47, 7.73it/s] 26%|██▌ | 131/500 [00:16<00:49, 7.41it/s] 26%|██▋ | 132/500 [00:16<00:47, 7.68it/s] 27%|██▋ | 133/500 [00:16<00:50, 7.32it/s] 27%|██▋ | 134/500 [00:16<00:48, 7.60it/s] 27%|██▋ | 135/500 [00:16<00:51, 7.08it/s] 27%|██▋ | 136/500 [00:16<00:48, 7.43it/s] 27%|██▋ | 137/500 [00:17<00:48, 7.53it/s] 28%|██▊ | 138/500 [00:17<00:45, 7.89it/s] 28%|██▊ | 139/500 [00:17<00:46, 7.70it/s] 28%|██▊ | 140/500 [00:17<00:45, 8.00it/s] 28%|██▊ | 141/500 [00:17<00:44, 8.05it/s] 28%|██▊ | 142/500 [00:17<00:47, 7.53it/s] 29%|██▊ | 143/500 [00:17<00:46, 7.65it/s] 29%|██▉ | 145/500 [00:18<00:40, 8.84it/s] 29%|██▉ | 146/500 [00:18<00:42, 8.38it/s] 29%|██▉ | 147/500 [00:18<00:41, 8.52it/s] 30%|██▉ | 149/500 [00:18<00:36, 9.61it/s] 30%|███ | 150/500 [00:18<00:38, 9.09it/s] 30%|███ | 151/500 [00:18<00:42, 8.29it/s] 31%|███ | 153/500 [00:18<00:39, 8.88it/s] 31%|███ | 154/500 [00:19<00:38, 9.00it/s] 31%|███ | 155/500 [00:19<00:42, 8.21it/s] 31%|███ | 156/500 [00:19<00:44, 7.70it/s] 31%|███▏ | 157/500 [00:19<00:44, 7.62it/s] 32%|███▏ | 158/500 [00:19<00:43, 7.86it/s] 32%|███▏ | 159/500 [00:19<00:43, 7.83it/s] 32%|███▏ | 161/500 [00:19<00:39, 8.67it/s] 32%|███▏ | 162/500 [00:20<00:40, 8.43it/s] 33%|███▎ | 163/500 [00:20<00:41, 8.14it/s] 33%|███▎ | 164/500 [00:20<00:42, 7.90it/s] 33%|███▎ | 165/500 [00:20<00:43, 7.76it/s] 33%|███▎ | 166/500 [00:20<00:45, 7.37it/s] 33%|███▎ | 167/500 [00:20<00:42, 7.90it/s] 34%|███▎ | 168/500 [00:20<00:39, 8.33it/s] 34%|███▍ | 169/500 [00:20<00:38, 8.61it/s] 34%|███▍ | 171/500 [00:21<00:33, 9.77it/s] 35%|███▍ | 173/500 [00:21<00:30, 10.61it/s] 35%|███▌ | 175/500 [00:21<00:28, 11.61it/s] 35%|███▌ | 177/500 [00:21<00:27, 11.80it/s] 36%|███▌ | 179/500 [00:21<00:29, 10.92it/s] 36%|███▌ | 181/500 [00:21<00:30, 10.33it/s] 37%|███▋ | 183/500 [00:22<00:33, 9.59it/s] 37%|███▋ | 185/500 [00:22<00:30, 10.43it/s] 37%|███▋ | 187/500 [00:22<00:33, 9.35it/s] 38%|███▊ | 188/500 [00:22<00:34, 8.99it/s] 38%|███▊ | 189/500 [00:22<00:35, 8.81it/s] 38%|███▊ | 190/500 [00:23<00:35, 8.83it/s] 38%|███▊ | 191/500 [00:23<00:35, 8.78it/s] 38%|███▊ | 192/500 [00:23<00:34, 8.86it/s] 39%|███▊ | 193/500 [00:23<00:34, 8.89it/s] 39%|███▉ | 194/500 [00:23<00:35, 8.56it/s] 39%|███▉ | 195/500 [00:23<00:37, 8.23it/s] 39%|███▉ | 196/500 [00:23<00:42, 7.18it/s] 39%|███▉ | 197/500 [00:23<00:42, 7.15it/s] 40%|███▉ | 198/500 [00:24<00:42, 7.08it/s] 40%|████ | 200/500 [00:24<00:36, 8.17it/s] 40%|████ | 202/500 [00:24<00:32, 9.08it/s] 41%|████ | 203/500 [00:24<00:32, 9.07it/s] 41%|████ | 204/500 [00:24<00:34, 8.59it/s] 41%|████ | 205/500 [00:24<00:35, 8.30it/s] 41%|████ | 206/500 [00:24<00:34, 8.50it/s] 41%|████▏ | 207/500 [00:25<00:33, 8.75it/s] 42%|████▏ | 208/500 [00:25<00:35, 8.12it/s] 42%|████▏ | 210/500 [00:25<00:30, 9.36it/s] 42%|████▏ | 212/500 [00:25<00:27, 10.34it/s] 43%|████▎ | 214/500 [00:25<00:29, 9.86it/s] 43%|████▎ | 215/500 [00:25<00:29, 9.78it/s] 43%|████▎ | 216/500 [00:25<00:30, 9.40it/s] 43%|████▎ | 217/500 [00:26<00:30, 9.35it/s] 44%|████▎ | 218/500 [00:26<00:29, 9.46it/s] 44%|████▍ | 219/500 [00:26<00:33, 8.51it/s] 44%|████▍ | 220/500 [00:26<00:31, 8.85it/s] 44%|████▍ | 221/500 [00:26<00:31, 8.76it/s] 44%|████▍ | 222/500 [00:26<00:31, 8.96it/s] 45%|████▍ | 223/500 [00:26<00:38, 7.28it/s] 45%|████▌ | 225/500 [00:27<00:29, 9.20it/s] 45%|████▌ | 226/500 [00:27<00:30, 9.00it/s] 45%|████▌ | 227/500 [00:27<00:32, 8.42it/s] 46%|████▌ | 229/500 [00:27<00:29, 9.21it/s] 46%|████▌ | 231/500 [00:27<00:26, 10.10it/s] 47%|████▋ | 233/500 [00:27<00:26, 10.01it/s] 47%|████▋ | 234/500 [00:27<00:27, 9.65it/s] 47%|████▋ | 235/500 [00:28<00:28, 9.16it/s] 47%|████▋ | 236/500 [00:28<00:28, 9.18it/s] 48%|████▊ | 238/500 [00:28<00:24, 10.63it/s] 48%|████▊ | 240/500 [00:28<00:21, 11.90it/s] 48%|████▊ | 242/500 [00:28<00:21, 12.00it/s] 49%|████▉ | 244/500 [00:28<00:21, 12.18it/s] 49%|████▉ | 246/500 [00:28<00:20, 12.15it/s] 50%|████▉ | 248/500 [00:29<00:20, 12.38it/s] 50%|█████ | 250/500 [00:29<00:19, 13.04it/s] 50%|█████ | 252/500 [00:29<00:18, 13.13it/s] 51%|█████ | 254/500 [00:29<00:17, 13.89it/s] 51%|█████ | 256/500 [00:29<00:16, 14.57it/s] 52%|█████▏ | 258/500 [00:29<00:16, 14.80it/s] 52%|█████▏ | 260/500 [00:29<00:16, 14.47it/s] 52%|█████▏ | 262/500 [00:30<00:15, 15.43it/s] 53%|█████▎ | 264/500 [00:30<00:15, 15.60it/s] 53%|█████▎ | 266/500 [00:30<00:15, 15.12it/s] 54%|█████▎ | 268/500 [00:30<00:16, 13.87it/s] 54%|█████▍ | 270/500 [00:30<00:16, 14.26it/s] 54%|█████▍ | 272/500 [00:30<00:15, 14.28it/s] 55%|█████▍ | 274/500 [00:30<00:16, 13.89it/s] 55%|█████▌ | 276/500 [00:31<00:15, 14.21it/s] 56%|█████▌ | 278/500 [00:31<00:14, 15.12it/s] 56%|█████▌ | 280/500 [00:31<00:14, 14.82it/s] 56%|█████▋ | 282/500 [00:31<00:14, 14.78it/s] 57%|█████▋ | 284/500 [00:31<00:14, 14.57it/s] 57%|█████▋ | 286/500 [00:31<00:14, 14.71it/s] 58%|█████▊ | 288/500 [00:31<00:13, 15.30it/s] 58%|█████▊ | 290/500 [00:31<00:14, 14.75it/s] 58%|█████▊ | 292/500 [00:32<00:13, 14.90it/s] 59%|█████▉ | 294/500 [00:32<00:14, 14.03it/s] 59%|█████▉ | 296/500 [00:32<00:14, 14.22it/s] 60%|█████▉ | 298/500 [00:32<00:14, 14.03it/s] 60%|██████ | 300/500 [00:32<00:13, 14.57it/s] 60%|██████ | 302/500 [00:32<00:12, 15.33it/s] 61%|██████ | 304/500 [00:32<00:13, 14.22it/s] 61%|██████ | 306/500 [00:33<00:13, 14.41it/s] 62%|██████▏ | 308/500 [00:33<00:13, 13.83it/s] 62%|██████▏ | 310/500 [00:33<00:13, 14.41it/s] 62%|██████▏ | 312/500 [00:33<00:13, 14.39it/s] 63%|██████▎ | 314/500 [00:33<00:13, 13.58it/s] 63%|██████▎ | 316/500 [00:33<00:13, 13.68it/s] 64%|██████▎ | 318/500 [00:33<00:12, 14.48it/s] 64%|██████▍ | 320/500 [00:34<00:12, 14.32it/s] 64%|██████▍ | 322/500 [00:34<00:13, 13.65it/s] 65%|██████▍ | 324/500 [00:34<00:12, 14.00it/s] 65%|██████▌ | 326/500 [00:34<00:13, 13.30it/s] 66%|██████▌ | 328/500 [00:34<00:11, 14.39it/s] 66%|██████▌ | 330/500 [00:34<00:11, 14.91it/s] 66%|██████▋ | 332/500 [00:34<00:11, 15.08it/s] 67%|██████▋ | 334/500 [00:35<00:11, 14.71it/s] 67%|██████▋ | 336/500 [00:35<00:11, 14.61it/s] 68%|██████▊ | 338/500 [00:35<00:11, 14.52it/s] 68%|██████▊ | 340/500 [00:35<00:10, 14.94it/s] 68%|██████▊ | 342/500 [00:35<00:10, 14.62it/s] 69%|██████▉ | 344/500 [00:35<00:10, 14.52it/s] 69%|██████▉ | 346/500 [00:35<00:10, 14.70it/s] 70%|██████▉ | 348/500 [00:36<00:10, 14.34it/s] 70%|███████ | 350/500 [00:36<00:11, 13.57it/s] 70%|███████ | 352/500 [00:36<00:10, 14.27it/s] 71%|███████ | 354/500 [00:36<00:10, 14.30it/s] 71%|███████ | 356/500 [00:36<00:09, 14.85it/s] 72%|███████▏ | 358/500 [00:36<00:10, 13.99it/s] 72%|███████▏ | 360/500 [00:36<00:09, 14.29it/s] 72%|███████▏ | 362/500 [00:36<00:09, 14.54it/s] 73%|███████▎ | 364/500 [00:37<00:09, 14.31it/s] 73%|███████▎ | 366/500 [00:37<00:09, 14.16it/s] 74%|███████▎ | 368/500 [00:37<00:08, 14.80it/s] 74%|███████▍ | 370/500 [00:37<00:08, 14.60it/s] 74%|███████▍ | 372/500 [00:37<00:08, 14.39it/s] 75%|███████▍ | 374/500 [00:37<00:08, 14.37it/s] 75%|███████▌ | 376/500 [00:37<00:08, 14.37it/s] 76%|███████▌ | 378/500 [00:38<00:08, 14.15it/s] 76%|███████▌ | 380/500 [00:38<00:08, 14.84it/s] 76%|███████▋ | 382/500 [00:38<00:07, 14.79it/s] 77%|███████▋ | 384/500 [00:38<00:08, 13.55it/s] 77%|███████▋ | 386/500 [00:38<00:08, 13.15it/s] 78%|███████▊ | 388/500 [00:38<00:08, 13.14it/s] 78%|███████▊ | 390/500 [00:38<00:08, 13.64it/s] 78%|███████▊ | 392/500 [00:39<00:08, 13.06it/s] 79%|███████▉ | 394/500 [00:39<00:07, 13.88it/s] 79%|███████▉ | 396/500 [00:39<00:07, 13.26it/s] 80%|███████▉ | 398/500 [00:39<00:07, 13.61it/s] 80%|████████ | 400/500 [00:39<00:07, 13.63it/s] 80%|████████ | 402/500 [00:39<00:07, 13.55it/s] 81%|████████ | 404/500 [00:40<00:07, 13.06it/s] 81%|████████ | 406/500 [00:40<00:07, 13.34it/s] 82%|████████▏ | 408/500 [00:40<00:06, 13.44it/s] 82%|████████▏ | 410/500 [00:40<00:06, 14.13it/s] 82%|████████▏ | 412/500 [00:40<00:05, 14.89it/s] 83%|████████▎ | 414/500 [00:40<00:05, 15.15it/s] 83%|████████▎ | 416/500 [00:40<00:05, 15.79it/s] 84%|████████▎ | 418/500 [00:40<00:05, 14.43it/s] 84%|████████▍ | 420/500 [00:41<00:05, 14.18it/s] 84%|████████▍ | 422/500 [00:41<00:05, 14.19it/s] 85%|████████▍ | 424/500 [00:41<00:05, 13.36it/s] 85%|████████▌ | 426/500 [00:41<00:05, 14.38it/s] 86%|████████▌ | 428/500 [00:41<00:05, 14.07it/s] 86%|████████▌ | 430/500 [00:41<00:04, 14.19it/s] 86%|████████▋ | 432/500 [00:41<00:04, 13.96it/s] 87%|████████▋ | 434/500 [00:42<00:04, 13.43it/s] 87%|████████▋ | 436/500 [00:42<00:04, 13.26it/s] 88%|████████▊ | 438/500 [00:42<00:04, 13.39it/s] 88%|████████▊ | 440/500 [00:42<00:04, 13.71it/s] 88%|████████▊ | 442/500 [00:42<00:04, 14.33it/s] 89%|████████▉ | 444/500 [00:42<00:03, 14.82it/s] 89%|████████▉ | 446/500 [00:42<00:03, 13.78it/s] 90%|████████▉ | 448/500 [00:43<00:03, 14.97it/s] 90%|█████████ | 450/500 [00:43<00:03, 14.75it/s] 90%|█████████ | 452/500 [00:43<00:03, 14.73it/s] 91%|█████████ | 454/500 [00:43<00:03, 14.89it/s] 91%|█████████ | 456/500 [00:43<00:03, 14.13it/s] 92%|█████████▏| 458/500 [00:43<00:02, 14.64it/s] 92%|█████████▏| 460/500 [00:43<00:02, 14.11it/s] 92%|█████████▏| 462/500 [00:44<00:02, 14.35it/s] 93%|█████████▎| 464/500 [00:44<00:02, 14.89it/s] 93%|█████████▎| 466/500 [00:44<00:02, 14.81it/s] 94%|█████████▎| 468/500 [00:44<00:02, 15.01it/s] 94%|█████████▍| 470/500 [00:44<00:02, 14.63it/s] 94%|█████████▍| 472/500 [00:44<00:01, 14.56it/s] 95%|█████████▍| 474/500 [00:44<00:01, 14.52it/s] 95%|█████████▌| 476/500 [00:45<00:01, 14.47it/s] 96%|█████████▌| 478/500 [00:45<00:01, 14.77it/s] 96%|█████████▌| 480/500 [00:45<00:01, 13.86it/s] 96%|█████████▋| 482/500 [00:45<00:01, 13.72it/s] 97%|█████████▋| 484/500 [00:45<00:01, 13.22it/s] 97%|█████████▋| 486/500 [00:45<00:01, 13.74it/s] 98%|█████████▊| 488/500 [00:45<00:00, 13.85it/s] 98%|█████████▊| 490/500 [00:46<00:00, 13.97it/s] 98%|█████████▊| 492/500 [00:46<00:00, 14.91it/s] 99%|█████████▉| 494/500 [00:46<00:00, 14.73it/s] 99%|█████████▉| 496/500 [00:46<00:00, 14.78it/s] 100%|█████████▉| 498/500 [00:46<00:00, 14.98it/s] 100%|██████████| 500/500 [00:46<00:00, 10.71it/s] 10%|█ | 1/10 [00:46<07:00, 46.74s/it] 0%| | 0/500 [00:00<?, ?it/s] 0%| | 2/500 [00:00<00:38, 13.04it/s] 1%| | 4/500 [00:00<00:39, 12.66it/s] 1%| | 6/500 [00:00<00:35, 13.92it/s] 2%|▏ | 8/500 [00:00<00:35, 13.77it/s] 2%|▏ | 10/500 [00:00<00:37, 13.19it/s] 2%|▏ | 12/500 [00:00<00:35, 13.81it/s] 3%|▎ | 14/500 [00:01<00:36, 13.49it/s] 3%|▎ | 16/500 [00:01<00:38, 12.71it/s] 4%|▎ | 18/500 [00:01<00:36, 13.09it/s] 4%|▍ | 20/500 [00:01<00:37, 12.65it/s] 4%|▍ | 22/500 [00:01<00:36, 13.04it/s] 5%|▍ | 24/500 [00:01<00:35, 13.29it/s] 5%|▌ | 26/500 [00:01<00:34, 13.61it/s] 6%|▌ | 28/500 [00:02<00:33, 14.19it/s] 6%|▌ | 30/500 [00:02<00:32, 14.61it/s] 6%|▋ | 32/500 [00:02<00:33, 14.09it/s] 7%|▋ | 34/500 [00:02<00:33, 13.74it/s] 7%|▋ | 36/500 [00:02<00:34, 13.53it/s] 8%|▊ | 38/500 [00:02<00:34, 13.47it/s] 8%|▊ | 40/500 [00:02<00:32, 14.08it/s] 8%|▊ | 42/500 [00:03<00:32, 13.91it/s] 9%|▉ | 44/500 [00:03<00:32, 13.94it/s] 9%|▉ | 46/500 [00:03<00:31, 14.38it/s] 10%|▉ | 48/500 [00:03<00:33, 13.66it/s] 10%|█ | 50/500 [00:03<00:32, 13.94it/s] 10%|█ | 52/500 [00:03<00:34, 13.13it/s] 11%|█ | 54/500 [00:03<00:34, 13.05it/s] 11%|█ | 56/500 [00:04<00:33, 13.35it/s] 12%|█▏ | 58/500 [00:04<00:33, 13.31it/s] 12%|█▏ | 60/500 [00:04<00:32, 13.59it/s] 12%|█▏ | 62/500 [00:04<00:31, 13.81it/s] 13%|█▎ | 64/500 [00:04<00:30, 14.11it/s] 13%|█▎ | 66/500 [00:04<00:30, 14.32it/s] 14%|█▎ | 68/500 [00:04<00:29, 14.66it/s] 14%|█▍ | 70/500 [00:05<00:28, 14.89it/s] 14%|█▍ | 72/500 [00:05<00:27, 15.57it/s] 15%|█▍ | 74/500 [00:05<00:27, 15.49it/s] 15%|█▌ | 76/500 [00:05<00:27, 15.39it/s] 16%|█▌ | 78/500 [00:05<00:30, 13.83it/s] 16%|█▌ | 80/500 [00:05<00:31, 13.41it/s] 16%|█▋ | 82/500 [00:05<00:30, 13.91it/s] 17%|█▋ | 84/500 [00:06<00:29, 14.21it/s] 17%|█▋ | 86/500 [00:06<00:29, 14.08it/s] 18%|█▊ | 88/500 [00:06<00:29, 14.09it/s] 18%|█▊ | 90/500 [00:06<00:28, 14.27it/s] 18%|█▊ | 92/500 [00:06<00:30, 13.47it/s] 19%|█▉ | 94/500 [00:06<00:29, 13.64it/s] 19%|█▉ | 96/500 [00:06<00:30, 13.17it/s] 20%|█▉ | 98/500 [00:07<00:29, 13.67it/s] 20%|██ | 100/500 [00:07<00:29, 13.67it/s] 20%|██ | 102/500 [00:07<00:29, 13.59it/s] 21%|██ | 104/500 [00:07<00:28, 13.93it/s] 21%|██ | 106/500 [00:07<00:27, 14.22it/s] 22%|██▏ | 108/500 [00:07<00:29, 13.51it/s] 22%|██▏ | 110/500 [00:08<00:30, 12.94it/s] 22%|██▏ | 112/500 [00:08<00:29, 13.15it/s] 23%|██▎ | 114/500 [00:08<00:29, 13.05it/s] 23%|██▎ | 116/500 [00:08<00:29, 13.03it/s] 24%|██▎ | 118/500 [00:08<00:29, 12.93it/s] 24%|██▍ | 120/500 [00:08<00:29, 12.93it/s] 24%|██▍ | 122/500 [00:08<00:29, 12.99it/s] 25%|██▍ | 124/500 [00:09<00:28, 13.38it/s] 25%|██▌ | 126/500 [00:09<00:28, 13.28it/s] 26%|██▌ | 128/500 [00:09<00:26, 13.85it/s] 26%|██▌ | 130/500 [00:09<00:27, 13.63it/s] 26%|██▋ | 132/500 [00:09<00:26, 13.65it/s] 27%|██▋ | 134/500 [00:09<00:27, 13.13it/s] 27%|██▋ | 136/500 [00:09<00:27, 13.25it/s] 28%|██▊ | 138/500 [00:10<00:27, 13.03it/s] 28%|██▊ | 140/500 [00:10<00:25, 13.87it/s] 28%|██▊ | 142/500 [00:10<00:24, 14.83it/s] 29%|██▉ | 144/500 [00:10<00:24, 14.36it/s] 29%|██▉ | 146/500 [00:10<00:23, 14.86it/s] 30%|██▉ | 148/500 [00:10<00:23, 14.67it/s] 30%|███ | 150/500 [00:10<00:23, 14.78it/s] 30%|███ | 152/500 [00:11<00:22, 15.24it/s] 31%|███ | 154/500 [00:11<00:22, 15.60it/s] 31%|███ | 156/500 [00:11<00:23, 14.49it/s] 32%|███▏ | 158/500 [00:11<00:24, 13.97it/s] 32%|███▏ | 160/500 [00:11<00:24, 13.66it/s] 32%|███▏ | 162/500 [00:11<00:23, 14.25it/s] 33%|███▎ | 164/500 [00:11<00:23, 14.50it/s] 33%|███▎ | 166/500 [00:12<00:23, 14.15it/s] 34%|███▎ | 168/500 [00:12<00:23, 14.25it/s] 34%|███▍ | 170/500 [00:12<00:22, 14.73it/s] 34%|███▍ | 172/500 [00:12<00:23, 13.88it/s] 35%|███▍ | 174/500 [00:12<00:25, 12.72it/s] 35%|███▌ | 176/500 [00:12<00:24, 13.40it/s] 36%|███▌ | 178/500 [00:12<00:25, 12.69it/s] 36%|███▌ | 180/500 [00:13<00:26, 12.28it/s] 36%|███▋ | 182/500 [00:13<00:24, 12.80it/s] 37%|███▋ | 184/500 [00:13<00:24, 12.76it/s] 37%|███▋ | 186/500 [00:13<00:23, 13.34it/s] 38%|███▊ | 188/500 [00:13<00:22, 13.94it/s] 38%|███▊ | 190/500 [00:13<00:22, 13.57it/s] 38%|███▊ | 192/500 [00:13<00:22, 13.98it/s] 39%|███▉ | 194/500 [00:14<00:21, 14.02it/s] 39%|███▉ | 196/500 [00:14<00:22, 13.26it/s] 40%|███▉ | 198/500 [00:14<00:24, 12.58it/s] 40%|████ | 200/500 [00:14<00:22, 13.06it/s] 40%|████ | 202/500 [00:14<00:23, 12.66it/s] 41%|████ | 204/500 [00:14<00:23, 12.61it/s] 41%|████ | 206/500 [00:15<00:22, 12.83it/s] 42%|████▏ | 208/500 [00:15<00:22, 12.86it/s] 42%|████▏ | 210/500 [00:15<00:22, 12.88it/s] 42%|████▏ | 212/500 [00:15<00:22, 12.67it/s] 43%|████▎ | 214/500 [00:15<00:21, 13.08it/s] 43%|████▎ | 216/500 [00:15<00:21, 13.06it/s] 44%|████▎ | 218/500 [00:15<00:20, 13.84it/s] 44%|████▍ | 220/500 [00:16<00:19, 14.05it/s] 44%|████▍ | 222/500 [00:16<00:20, 13.38it/s] 45%|████▍ | 224/500 [00:16<00:20, 13.77it/s] 45%|████▌ | 226/500 [00:16<00:19, 13.84it/s] 46%|████▌ | 228/500 [00:16<00:18, 14.43it/s] 46%|████▌ | 230/500 [00:16<00:18, 14.43it/s] 46%|████▋ | 232/500 [00:16<00:18, 14.61it/s] 47%|████▋ | 234/500 [00:17<00:20, 13.22it/s] 47%|████▋ | 236/500 [00:17<00:19, 13.74it/s] 48%|████▊ | 238/500 [00:17<00:18, 13.99it/s] 48%|████▊ | 240/500 [00:17<00:18, 14.20it/s] 48%|████▊ | 242/500 [00:17<00:19, 13.10it/s] 49%|████▉ | 244/500 [00:17<00:19, 13.41it/s] 49%|████▉ | 246/500 [00:18<00:19, 12.86it/s] 50%|████▉ | 248/500 [00:18<00:21, 11.75it/s] 50%|█████ | 250/500 [00:18<00:22, 11.27it/s] 50%|█████ | 252/500 [00:18<00:23, 10.62it/s] 51%|█████ | 254/500 [00:18<00:25, 9.57it/s] 51%|█████ | 255/500 [00:19<00:26, 9.24it/s] 51%|█████ | 256/500 [00:19<00:26, 9.20it/s] 51%|█████▏ | 257/500 [00:19<00:26, 9.28it/s] 52%|█████▏ | 259/500 [00:19<00:26, 9.06it/s] 52%|█████▏ | 260/500 [00:19<00:27, 8.73it/s] 52%|█████▏ | 261/500 [00:19<00:28, 8.44it/s] 52%|█████▏ | 262/500 [00:19<00:28, 8.23it/s] 53%|█████▎ | 264/500 [00:20<00:24, 9.73it/s] 53%|█████▎ | 265/500 [00:20<00:25, 9.23it/s] 53%|█████▎ | 266/500 [00:20<00:26, 8.71it/s] 53%|█████▎ | 267/500 [00:20<00:27, 8.41it/s] 54%|█████▍ | 269/500 [00:20<00:22, 10.24it/s] 54%|█████▍ | 271/500 [00:20<00:23, 9.79it/s] 54%|█████▍ | 272/500 [00:20<00:24, 9.13it/s] 55%|█████▍ | 273/500 [00:21<00:26, 8.60it/s] 55%|█████▍ | 274/500 [00:21<00:25, 8.83it/s] 55%|█████▌ | 275/500 [00:21<00:25, 8.87it/s] 55%|█████▌ | 276/500 [00:21<00:26, 8.61it/s] 55%|█████▌ | 277/500 [00:21<00:25, 8.61it/s] 56%|█████▌ | 278/500 [00:21<00:25, 8.60it/s] 56%|█████▌ | 279/500 [00:21<00:25, 8.68it/s] 56%|█████▌ | 280/500 [00:21<00:27, 8.02it/s] 56%|█████▋ | 282/500 [00:22<00:21, 10.02it/s] 57%|█████▋ | 284/500 [00:22<00:20, 10.53it/s] 57%|█████▋ | 286/500 [00:22<00:21, 9.95it/s] 57%|█████▋ | 287/500 [00:22<00:22, 9.41it/s] 58%|█████▊ | 288/500 [00:22<00:22, 9.26it/s] 58%|█████▊ | 289/500 [00:22<00:22, 9.34it/s] 58%|█████▊ | 290/500 [00:22<00:23, 8.96it/s] 58%|█████▊ | 291/500 [00:23<00:24, 8.66it/s] 58%|█████▊ | 292/500 [00:23<00:24, 8.36it/s] 59%|█████▊ | 293/500 [00:23<00:23, 8.74it/s] 59%|█████▉ | 294/500 [00:23<00:23, 8.75it/s] 59%|█████▉ | 296/500 [00:23<00:20, 9.99it/s] 60%|█████▉ | 298/500 [00:23<00:17, 11.46it/s] 60%|██████ | 300/500 [00:23<00:18, 11.07it/s] 60%|██████ | 302/500 [00:23<00:15, 12.66it/s] 61%|██████ | 304/500 [00:24<00:14, 13.15it/s] 61%|██████ | 306/500 [00:24<00:14, 13.29it/s] 62%|██████▏ | 308/500 [00:24<00:14, 13.39it/s] 62%|██████▏ | 310/500 [00:24<00:14, 13.31it/s] 62%|██████▏ | 312/500 [00:24<00:14, 13.04it/s] 63%|██████▎ | 314/500 [00:24<00:14, 12.66it/s] 63%|██████▎ | 316/500 [00:25<00:13, 13.25it/s] 64%|██████▎ | 318/500 [00:25<00:12, 14.05it/s] 64%|██████▍ | 320/500 [00:25<00:13, 13.57it/s] 64%|██████▍ | 322/500 [00:25<00:13, 13.64it/s] 65%|██████▍ | 324/500 [00:25<00:12, 13.55it/s] 65%|██████▌ | 326/500 [00:25<00:13, 13.21it/s] 66%|██████▌ | 328/500 [00:25<00:12, 13.25it/s] 66%|██████▌ | 330/500 [00:26<00:12, 13.76it/s] 66%|██████▋ | 332/500 [00:26<00:11, 14.50it/s] 67%|██████▋ | 334/500 [00:26<00:11, 15.00it/s] 67%|██████▋ | 336/500 [00:26<00:11, 14.81it/s] 68%|██████▊ | 338/500 [00:26<00:11, 14.17it/s] 68%|██████▊ | 340/500 [00:26<00:11, 13.62it/s] 68%|██████▊ | 342/500 [00:26<00:11, 13.72it/s] 69%|██████▉ | 344/500 [00:27<00:11, 13.81it/s] 69%|██████▉ | 346/500 [00:27<00:10, 14.26it/s] 70%|██████▉ | 348/500 [00:27<00:10, 14.43it/s] 70%|███████ | 350/500 [00:27<00:10, 14.06it/s] 70%|███████ | 352/500 [00:27<00:11, 13.18it/s] 71%|███████ | 354/500 [00:27<00:11, 13.07it/s] 71%|███████ | 356/500 [00:27<00:11, 12.64it/s] 72%|███████▏ | 358/500 [00:28<00:11, 12.90it/s] 72%|███████▏ | 360/500 [00:28<00:10, 12.86it/s] 72%|███████▏ | 362/500 [00:28<00:10, 13.48it/s] 73%|███████▎ | 364/500 [00:28<00:10, 13.02it/s] 73%|███████▎ | 366/500 [00:28<00:10, 13.36it/s] 74%|███████▎ | 368/500 [00:28<00:09, 14.38it/s] 74%|███████▍ | 370/500 [00:28<00:09, 13.69it/s] 74%|███████▍ | 372/500 [00:29<00:09, 13.84it/s] 75%|███████▍ | 374/500 [00:29<00:09, 13.83it/s] 75%|███████▌ | 376/500 [00:29<00:08, 14.18it/s] 76%|███████▌ | 378/500 [00:29<00:08, 13.84it/s] 76%|███████▌ | 380/500 [00:29<00:08, 13.41it/s] 76%|███████▋ | 382/500 [00:29<00:08, 13.38it/s] 77%|███████▋ | 384/500 [00:29<00:08, 14.32it/s] 77%|███████▋ | 386/500 [00:30<00:07, 14.99it/s] 78%|███████▊ | 388/500 [00:30<00:07, 14.75it/s] 78%|███████▊ | 390/500 [00:30<00:07, 13.97it/s] 78%|███████▊ | 392/500 [00:30<00:07, 14.59it/s] 79%|███████▉ | 394/500 [00:30<00:07, 14.20it/s] 79%|███████▉ | 396/500 [00:30<00:07, 14.32it/s] 80%|███████▉ | 398/500 [00:30<00:07, 14.38it/s] 80%|████████ | 400/500 [00:31<00:07, 14.06it/s] 80%|████████ | 402/500 [00:31<00:07, 13.86it/s] 81%|████████ | 404/500 [00:31<00:06, 13.80it/s] 81%|████████ | 406/500 [00:31<00:06, 14.12it/s] 82%|████████▏ | 408/500 [00:31<00:06, 14.39it/s] 82%|████████▏ | 410/500 [00:31<00:06, 14.44it/s] 82%|████████▏ | 412/500 [00:31<00:06, 13.16it/s] 83%|████████▎ | 414/500 [00:32<00:06, 13.30it/s] 83%|████████▎ | 416/500 [00:32<00:06, 13.84it/s] 84%|████████▎ | 418/500 [00:32<00:05, 14.17it/s] 84%|████████▍ | 420/500 [00:32<00:05, 14.18it/s] 84%|████████▍ | 422/500 [00:32<00:05, 14.30it/s] 85%|████████▍ | 424/500 [00:32<00:05, 13.53it/s] 85%|████████▌ | 426/500 [00:32<00:05, 13.18it/s] 86%|████████▌ | 428/500 [00:33<00:05, 13.61it/s] 86%|████████▌ | 430/500 [00:33<00:05, 13.76it/s] 86%|████████▋ | 432/500 [00:33<00:04, 13.98it/s] 87%|████████▋ | 434/500 [00:33<00:04, 13.39it/s] 87%|████████▋ | 436/500 [00:33<00:04, 13.48it/s] 88%|████████▊ | 438/500 [00:33<00:04, 12.91it/s] 88%|████████▊ | 440/500 [00:34<00:04, 12.97it/s] 88%|████████▊ | 442/500 [00:34<00:04, 13.01it/s] 89%|████████▉ | 444/500 [00:34<00:04, 13.11it/s] 89%|████████▉ | 446/500 [00:34<00:04, 13.36it/s] 90%|████████▉ | 448/500 [00:34<00:03, 13.71it/s] 90%|█████████ | 450/500 [00:34<00:03, 14.13it/s] 90%|█████████ | 452/500 [00:34<00:03, 14.21it/s] 91%|█████████ | 454/500 [00:34<00:03, 14.27it/s] 91%|█████████ | 456/500 [00:35<00:03, 14.64it/s] 92%|█████████▏| 458/500 [00:35<00:02, 14.21it/s] 92%|█████████▏| 460/500 [00:35<00:02, 13.50it/s] 92%|█████████▏| 462/500 [00:35<00:02, 12.71it/s] 93%|█████████▎| 464/500 [00:35<00:02, 13.03it/s] 93%|█████████▎| 466/500 [00:35<00:02, 13.13it/s] 94%|█████████▎| 468/500 [00:36<00:02, 13.78it/s] 94%|█████████▍| 470/500 [00:36<00:02, 13.94it/s] 94%|█████████▍| 472/500 [00:36<00:01, 14.05it/s] 95%|█████████▍| 474/500 [00:36<00:01, 14.27it/s] 95%|█████████▌| 476/500 [00:36<00:01, 14.97it/s] 96%|█████████▌| 478/500 [00:36<00:01, 14.37it/s] 96%|█████████▌| 480/500 [00:36<00:01, 13.59it/s] 96%|█████████▋| 482/500 [00:37<00:01, 13.89it/s] 97%|█████████▋| 484/500 [00:37<00:01, 14.60it/s] 97%|█████████▋| 486/500 [00:37<00:01, 13.76it/s] 98%|█████████▊| 488/500 [00:37<00:00, 13.49it/s] 98%|█████████▊| 490/500 [00:37<00:00, 13.44it/s] 98%|█████████▊| 492/500 [00:37<00:00, 13.46it/s] 99%|█████████▉| 494/500 [00:37<00:00, 13.44it/s] 99%|█████████▉| 496/500 [00:38<00:00, 14.24it/s] 100%|█████████▉| 498/500 [00:38<00:00, 14.52it/s] 100%|██████████| 500/500 [00:38<00:00, 13.05it/s] 20%|██ | 2/10 [01:25<05:34, 41.79s/it] 0%| | 0/500 [00:00<?, ?it/s] 0%| | 2/500 [00:00<00:29, 16.88it/s] 1%| | 4/500 [00:00<00:34, 14.39it/s] 1%| | 6/500 [00:00<00:34, 14.19it/s] 2%|▏ | 8/500 [00:00<00:37, 13.18it/s] 2%|▏ | 10/500 [00:00<00:36, 13.57it/s] 2%|▏ | 12/500 [00:00<00:34, 14.01it/s] 3%|▎ | 14/500 [00:00<00:34, 14.13it/s] 3%|▎ | 16/500 [00:01<00:32, 14.73it/s] 4%|▎ | 18/500 [00:01<00:34, 14.02it/s] 4%|▍ | 20/500 [00:01<00:35, 13.35it/s] 4%|▍ | 22/500 [00:01<00:34, 13.80it/s] 5%|▍ | 24/500 [00:01<00:33, 14.41it/s] 5%|▌ | 26/500 [00:01<00:31, 14.88it/s] 6%|▌ | 28/500 [00:01<00:30, 15.35it/s] 6%|▌ | 30/500 [00:02<00:29, 16.02it/s] 6%|▋ | 32/500 [00:02<00:29, 15.89it/s] 7%|▋ | 34/500 [00:02<00:30, 15.25it/s] 7%|▋ | 36/500 [00:02<00:31, 14.69it/s] 8%|▊ | 38/500 [00:02<00:34, 13.30it/s] 8%|▊ | 40/500 [00:02<00:32, 13.97it/s] 8%|▊ | 42/500 [00:02<00:32, 14.19it/s] 9%|▉ | 44/500 [00:03<00:31, 14.52it/s] 9%|▉ | 46/500 [00:03<00:31, 14.64it/s] 10%|▉ | 48/500 [00:03<00:31, 14.48it/s] 10%|█ | 50/500 [00:03<00:31, 14.39it/s] 10%|█ | 52/500 [00:03<00:31, 14.10it/s] 11%|█ | 54/500 [00:03<00:31, 14.02it/s] 11%|█ | 56/500 [00:03<00:31, 14.22it/s] 12%|█▏ | 58/500 [00:04<00:30, 14.68it/s] 12%|█▏ | 60/500 [00:04<00:30, 14.35it/s] 12%|█▏ | 62/500 [00:04<00:29, 14.66it/s] 13%|█▎ | 64/500 [00:04<00:31, 13.69it/s] 13%|█▎ | 66/500 [00:04<00:31, 13.84it/s] 14%|█▎ | 68/500 [00:04<00:30, 14.05it/s] 14%|█▍ | 70/500 [00:04<00:29, 14.60it/s] 14%|█▍ | 72/500 [00:04<00:28, 15.16it/s] 15%|█▍ | 74/500 [00:05<00:27, 15.24it/s] 15%|█▌ | 76/500 [00:05<00:27, 15.35it/s] 16%|█▌ | 78/500 [00:05<00:28, 14.91it/s] 16%|█▌ | 80/500 [00:05<00:27, 15.01it/s] 16%|█▋ | 82/500 [00:05<00:28, 14.76it/s] 17%|█▋ | 84/500 [00:05<00:28, 14.79it/s] 17%|█▋ | 86/500 [00:05<00:26, 15.45it/s] 18%|█▊ | 88/500 [00:06<00:28, 14.52it/s] 18%|█▊ | 90/500 [00:06<00:27, 14.69it/s] 18%|█▊ | 92/500 [00:06<00:28, 14.24it/s] 19%|█▉ | 94/500 [00:06<00:29, 13.77it/s] 19%|█▉ | 96/500 [00:06<00:29, 13.81it/s] 20%|█▉ | 98/500 [00:06<00:28, 13.87it/s] 20%|██ | 100/500 [00:06<00:29, 13.66it/s] 20%|██ | 102/500 [00:07<00:28, 14.11it/s] 21%|██ | 104/500 [00:07<00:29, 13.64it/s] 21%|██ | 106/500 [00:07<00:30, 12.87it/s] 22%|██▏ | 108/500 [00:07<00:28, 13.83it/s] 22%|██▏ | 110/500 [00:07<00:26, 14.46it/s] 22%|██▏ | 112/500 [00:07<00:27, 13.95it/s] 23%|██▎ | 114/500 [00:07<00:26, 14.70it/s] 23%|██▎ | 116/500 [00:08<00:27, 14.01it/s] 24%|██▎ | 118/500 [00:08<00:28, 13.43it/s] 24%|██▍ | 120/500 [00:08<00:26, 14.24it/s] 24%|██▍ | 122/500 [00:08<00:25, 14.74it/s] 25%|██▍ | 124/500 [00:08<00:25, 14.65it/s] 25%|██▌ | 126/500 [00:08<00:25, 14.80it/s] 26%|██▌ | 128/500 [00:08<00:25, 14.59it/s] 26%|██▌ | 130/500 [00:09<00:25, 14.36it/s] 26%|██▋ | 132/500 [00:09<00:25, 14.36it/s] 27%|██▋ | 134/500 [00:09<00:25, 14.24it/s] 27%|██▋ | 136/500 [00:09<00:26, 13.58it/s] 28%|██▊ | 138/500 [00:09<00:25, 13.97it/s] 28%|██▊ | 140/500 [00:09<00:25, 14.25it/s] 28%|██▊ | 142/500 [00:09<00:24, 14.52it/s] 29%|██▉ | 144/500 [00:10<00:23, 15.23it/s] 29%|██▉ | 146/500 [00:10<00:23, 15.17it/s] 30%|██▉ | 148/500 [00:10<00:23, 14.87it/s] 30%|███ | 150/500 [00:10<00:24, 14.25it/s] 30%|███ | 152/500 [00:10<00:24, 14.01it/s] 31%|███ | 154/500 [00:10<00:24, 14.22it/s] 31%|███ | 156/500 [00:10<00:24, 13.83it/s] 32%|███▏ | 158/500 [00:11<00:24, 13.89it/s] 32%|███▏ | 160/500 [00:11<00:23, 14.27it/s] 32%|███▏ | 162/500 [00:11<00:23, 14.52it/s] 33%|███▎ | 164/500 [00:11<00:23, 14.56it/s] 33%|███▎ | 166/500 [00:11<00:23, 14.45it/s] 34%|███▎ | 168/500 [00:11<00:23, 14.17it/s] 34%|███▍ | 170/500 [00:11<00:22, 14.63it/s] 34%|███▍ | 172/500 [00:11<00:23, 14.19it/s] 35%|███▍ | 174/500 [00:12<00:22, 14.18it/s] 35%|███▌ | 176/500 [00:12<00:22, 14.40it/s] 36%|███▌ | 178/500 [00:12<00:21, 14.69it/s] 36%|███▌ | 180/500 [00:12<00:21, 14.80it/s] 36%|███▋ | 182/500 [00:12<00:22, 14.21it/s] 37%|███▋ | 184/500 [00:12<00:22, 14.00it/s] 37%|███▋ | 186/500 [00:12<00:22, 13.72it/s] 38%|███▊ | 188/500 [00:13<00:22, 13.89it/s] 38%|███▊ | 190/500 [00:13<00:22, 13.83it/s] 38%|███▊ | 192/500 [00:13<00:22, 13.92it/s] 39%|███▉ | 194/500 [00:13<00:23, 12.93it/s] 39%|███▉ | 196/500 [00:13<00:22, 13.56it/s] 40%|███▉ | 198/500 [00:13<00:21, 13.96it/s] 40%|████ | 200/500 [00:14<00:21, 13.96it/s] 40%|████ | 202/500 [00:14<00:20, 14.28it/s] 41%|████ | 204/500 [00:14<00:20, 14.73it/s] 41%|████ | 206/500 [00:14<00:20, 14.55it/s] 42%|████▏ | 208/500 [00:14<00:20, 14.24it/s] 42%|████▏ | 210/500 [00:14<00:20, 14.48it/s] 42%|████▏ | 212/500 [00:14<00:19, 14.72it/s] 43%|████▎ | 214/500 [00:14<00:19, 14.64it/s] 43%|████▎ | 216/500 [00:15<00:19, 14.86it/s] 44%|████▎ | 218/500 [00:15<00:18, 15.11it/s] 44%|████▍ | 220/500 [00:15<00:18, 15.30it/s] 44%|████▍ | 222/500 [00:15<00:18, 15.11it/s] 45%|████▍ | 224/500 [00:15<00:19, 14.39it/s] 45%|████▌ | 226/500 [00:15<00:20, 13.45it/s] 46%|████▌ | 228/500 [00:15<00:19, 14.27it/s] 46%|████▌ | 230/500 [00:16<00:18, 14.47it/s] 46%|████▋ | 232/500 [00:16<00:18, 14.37it/s] 47%|████▋ | 234/500 [00:16<00:19, 13.82it/s] 47%|████▋ | 236/500 [00:16<00:18, 14.06it/s] 48%|████▊ | 238/500 [00:16<00:18, 14.23it/s] 48%|████▊ | 240/500 [00:16<00:17, 14.53it/s] 48%|████▊ | 242/500 [00:16<00:18, 14.25it/s] 49%|████▉ | 244/500 [00:17<00:18, 13.99it/s] 49%|████▉ | 246/500 [00:17<00:17, 14.35it/s] 50%|████▉ | 248/500 [00:17<00:17, 14.24it/s] 50%|█████ | 250/500 [00:17<00:17, 14.70it/s] 50%|█████ | 252/500 [00:17<00:17, 14.16it/s] 51%|█████ | 254/500 [00:17<00:16, 14.50it/s] 51%|█████ | 256/500 [00:17<00:17, 13.85it/s] 52%|█████▏ | 258/500 [00:18<00:17, 13.99it/s] 52%|█████▏ | 260/500 [00:18<00:17, 13.90it/s] 52%|█████▏ | 262/500 [00:18<00:17, 13.41it/s] 53%|█████▎ | 264/500 [00:18<00:17, 13.75it/s] 53%|█████▎ | 266/500 [00:18<00:16, 13.90it/s] 54%|█████▎ | 268/500 [00:18<00:16, 14.34it/s] 54%|█████▍ | 270/500 [00:18<00:16, 14.33it/s] 54%|█████▍ | 272/500 [00:19<00:15, 14.36it/s] 55%|█████▍ | 274/500 [00:19<00:15, 14.65it/s] 55%|█████▌ | 276/500 [00:19<00:15, 14.52it/s] 56%|█████▌ | 278/500 [00:19<00:15, 14.63it/s] 56%|█████▌ | 280/500 [00:19<00:16, 13.40it/s] 56%|█████▋ | 282/500 [00:19<00:15, 13.73it/s] 57%|█████▋ | 284/500 [00:19<00:15, 13.79it/s] 57%|█████▋ | 286/500 [00:20<00:15, 13.70it/s] 58%|█████▊ | 288/500 [00:20<00:15, 14.13it/s] 58%|█████▊ | 290/500 [00:20<00:14, 14.63it/s] 58%|█████▊ | 292/500 [00:20<00:14, 14.64it/s] 59%|█████▉ | 294/500 [00:20<00:13, 14.82it/s] 59%|█████▉ | 296/500 [00:20<00:14, 14.44it/s] 60%|█████▉ | 298/500 [00:20<00:14, 14.41it/s] 60%|██████ | 300/500 [00:20<00:13, 14.86it/s] 60%|██████ | 302/500 [00:21<00:13, 14.80it/s] 61%|██████ | 304/500 [00:21<00:13, 14.26it/s] 61%|██████ | 306/500 [00:21<00:14, 13.75it/s] 62%|██████▏ | 308/500 [00:21<00:14, 13.71it/s] 62%|██████▏ | 310/500 [00:21<00:16, 11.60it/s] 62%|██████▏ | 312/500 [00:21<00:15, 12.47it/s] 63%|██████▎ | 314/500 [00:22<00:14, 13.13it/s] 63%|██████▎ | 316/500 [00:22<00:14, 12.87it/s] 64%|██████▎ | 318/500 [00:22<00:13, 13.51it/s] 64%|██████▍ | 320/500 [00:22<00:13, 13.30it/s] 64%|██████▍ | 322/500 [00:22<00:13, 13.66it/s] 65%|██████▍ | 324/500 [00:22<00:13, 13.29it/s] 65%|██████▌ | 326/500 [00:22<00:13, 13.38it/s] 66%|██████▌ | 328/500 [00:23<00:13, 12.96it/s] 66%|██████▌ | 330/500 [00:23<00:12, 13.14it/s] 66%|██████▋ | 332/500 [00:23<00:12, 13.25it/s] 67%|██████▋ | 334/500 [00:23<00:12, 13.41it/s] 67%|██████▋ | 336/500 [00:23<00:12, 13.17it/s] 68%|██████▊ | 338/500 [00:23<00:11, 14.14it/s] 68%|██████▊ | 340/500 [00:23<00:10, 14.55it/s] 68%|██████▊ | 342/500 [00:24<00:10, 15.03it/s] 69%|██████▉ | 344/500 [00:24<00:14, 10.96it/s] 69%|██████▉ | 346/500 [00:24<00:16, 9.38it/s] 70%|██████▉ | 348/500 [00:24<00:18, 8.30it/s] 70%|██████▉ | 349/500 [00:25<00:19, 7.70it/s] 70%|███████ | 350/500 [00:25<00:19, 7.61it/s] 70%|███████ | 351/500 [00:25<00:19, 7.84it/s] 71%|███████ | 353/500 [00:25<00:15, 9.57it/s] 71%|███████ | 355/500 [00:25<00:12, 11.28it/s] 71%|███████▏ | 357/500 [00:25<00:11, 12.84it/s] 72%|███████▏ | 359/500 [00:25<00:10, 13.50it/s] 72%|███████▏ | 361/500 [00:26<00:10, 13.69it/s] 73%|███████▎ | 363/500 [00:26<00:09, 13.83it/s] 73%|███████▎ | 365/500 [00:26<00:09, 14.13it/s] 73%|███████▎ | 367/500 [00:26<00:09, 14.03it/s] 74%|███████▍ | 369/500 [00:26<00:09, 14.48it/s] 74%|███████▍ | 371/500 [00:26<00:09, 14.16it/s] 75%|███████▍ | 373/500 [00:26<00:08, 14.12it/s] 75%|███████▌ | 375/500 [00:27<00:08, 14.35it/s] 75%|███████▌ | 377/500 [00:27<00:08, 13.95it/s] 76%|███████▌ | 379/500 [00:27<00:08, 14.99it/s] 76%|███████▌ | 381/500 [00:27<00:07, 14.95it/s] 77%|███████▋ | 383/500 [00:27<00:08, 13.87it/s] 77%|███████▋ | 385/500 [00:27<00:08, 13.29it/s] 77%|███████▋ | 387/500 [00:27<00:08, 13.42it/s] 78%|███████▊ | 389/500 [00:28<00:08, 13.61it/s] 78%|███████▊ | 391/500 [00:28<00:08, 13.28it/s] 79%|███████▊ | 393/500 [00:28<00:07, 13.97it/s] 79%|███████▉ | 395/500 [00:28<00:07, 14.48it/s] 79%|███████▉ | 397/500 [00:28<00:07, 14.63it/s] 80%|███████▉ | 399/500 [00:28<00:06, 15.39it/s] 80%|████████ | 401/500 [00:28<00:06, 15.25it/s] 81%|████████ | 403/500 [00:28<00:06, 14.64it/s] 81%|████████ | 405/500 [00:29<00:06, 13.89it/s] 81%|████████▏ | 407/500 [00:29<00:06, 14.10it/s] 82%|████████▏ | 409/500 [00:29<00:06, 13.94it/s] 82%|████████▏ | 411/500 [00:29<00:06, 13.64it/s] 83%|████████▎ | 413/500 [00:29<00:05, 14.62it/s] 83%|████████▎ | 415/500 [00:29<00:05, 14.43it/s] 83%|████████▎ | 417/500 [00:29<00:05, 14.81it/s] 84%|████████▍ | 419/500 [00:30<00:05, 14.45it/s] 84%|████████▍ | 421/500 [00:30<00:05, 13.93it/s] 85%|████████▍ | 423/500 [00:30<00:05, 14.59it/s] 85%|████████▌ | 425/500 [00:30<00:05, 14.42it/s] 85%|████████▌ | 427/500 [00:30<00:04, 14.72it/s] 86%|████████▌ | 429/500 [00:30<00:04, 15.27it/s] 86%|████████▌ | 431/500 [00:30<00:04, 14.91it/s] 87%|████████▋ | 433/500 [00:31<00:04, 15.53it/s] 87%|████████▋ | 435/500 [00:31<00:04, 15.85it/s] 87%|████████▋ | 437/500 [00:31<00:04, 15.17it/s] 88%|████████▊ | 439/500 [00:31<00:04, 14.60it/s] 88%|████████▊ | 441/500 [00:31<00:04, 13.51it/s] 89%|████████▊ | 443/500 [00:31<00:03, 14.41it/s] 89%|████████▉ | 445/500 [00:31<00:03, 14.44it/s] 89%|████████▉ | 447/500 [00:32<00:03, 14.39it/s] 90%|████████▉ | 449/500 [00:32<00:03, 14.19it/s] 90%|█████████ | 451/500 [00:32<00:03, 14.11it/s] 91%|█████████ | 453/500 [00:32<00:03, 13.92it/s] 91%|█████████ | 455/500 [00:32<00:03, 13.98it/s] 91%|█████████▏| 457/500 [00:32<00:02, 14.40it/s] 92%|█████████▏| 459/500 [00:32<00:02, 14.13it/s] 92%|█████████▏| 461/500 [00:33<00:02, 14.55it/s] 93%|█████████▎| 463/500 [00:33<00:02, 14.93it/s] 93%|█████████▎| 465/500 [00:33<00:02, 14.58it/s] 93%|█████████▎| 467/500 [00:33<00:02, 13.96it/s] 94%|█████████▍| 469/500 [00:33<00:02, 12.82it/s] 94%|█████████▍| 471/500 [00:33<00:02, 12.99it/s] 95%|█████████▍| 473/500 [00:33<00:01, 13.86it/s] 95%|█████████▌| 475/500 [00:34<00:01, 14.49it/s] 95%|█████████▌| 477/500 [00:34<00:01, 14.37it/s] 96%|█████████▌| 479/500 [00:34<00:01, 14.46it/s] 96%|█████████▌| 481/500 [00:34<00:01, 15.16it/s] 97%|█████████▋| 483/500 [00:34<00:01, 14.26it/s] 97%|█████████▋| 485/500 [00:34<00:01, 14.23it/s] 97%|█████████▋| 487/500 [00:34<00:00, 14.55it/s] 98%|█████████▊| 489/500 [00:34<00:00, 14.55it/s] 98%|█████████▊| 491/500 [00:35<00:00, 14.57it/s] 99%|█████████▊| 493/500 [00:35<00:00, 14.39it/s] 99%|█████████▉| 495/500 [00:35<00:00, 13.47it/s] 99%|█████████▉| 497/500 [00:35<00:00, 14.02it/s] 100%|██████████| 500/500 [00:35<00:00, 13.97it/s] 30%|███ | 3/10 [02:00<04:33, 39.06s/it] 0%| | 0/500 [00:00<?, ?it/s] 0%| | 2/500 [00:00<00:34, 14.35it/s] 1%| | 4/500 [00:00<00:33, 14.83it/s] 1%| | 6/500 [00:00<00:33, 14.89it/s] 2%|▏ | 8/500 [00:00<00:35, 13.78it/s] 2%|▏ | 10/500 [00:00<00:38, 12.73it/s] 2%|▏ | 12/500 [00:00<00:39, 12.36it/s] 3%|▎ | 14/500 [00:01<00:36, 13.48it/s] 3%|▎ | 16/500 [00:01<00:37, 12.97it/s] 4%|▎ | 18/500 [00:01<00:38, 12.56it/s] 4%|▍ | 20/500 [00:01<00:36, 13.26it/s] 4%|▍ | 22/500 [00:01<00:35, 13.55it/s] 5%|▍ | 24/500 [00:01<00:35, 13.57it/s] 5%|▌ | 26/500 [00:01<00:34, 13.65it/s] 6%|▌ | 28/500 [00:02<00:32, 14.44it/s] 6%|▌ | 30/500 [00:02<00:30, 15.20it/s] 6%|▋ | 32/500 [00:02<00:31, 14.81it/s] 7%|▋ | 34/500 [00:02<00:30, 15.30it/s] 7%|▋ | 36/500 [00:02<00:32, 14.46it/s] 8%|▊ | 38/500 [00:02<00:30, 15.31it/s] 8%|▊ | 40/500 [00:02<00:30, 15.11it/s] 8%|▊ | 42/500 [00:02<00:30, 14.99it/s] 9%|▉ | 44/500 [00:03<00:29, 15.64it/s] 9%|▉ | 46/500 [00:03<00:28, 15.99it/s] 10%|▉ | 48/500 [00:03<00:29, 15.49it/s] 10%|█ | 50/500 [00:03<00:29, 15.10it/s] 10%|█ | 52/500 [00:03<00:29, 14.96it/s] 11%|█ | 54/500 [00:03<00:31, 14.07it/s] 11%|█ | 56/500 [00:03<00:32, 13.61it/s] 12%|█▏ | 58/500 [00:04<00:32, 13.42it/s] 12%|█▏ | 60/500 [00:04<00:31, 14.04it/s] 12%|█▏ | 62/500 [00:04<00:30, 14.31it/s] 13%|█▎ | 64/500 [00:04<00:30, 14.19it/s] 13%|█▎ | 66/500 [00:04<00:30, 14.09it/s] 14%|█▎ | 68/500 [00:04<00:31, 13.93it/s] 14%|█▍ | 70/500 [00:04<00:31, 13.71it/s] 14%|█▍ | 72/500 [00:05<00:29, 14.34it/s] 15%|█▍ | 74/500 [00:05<00:31, 13.73it/s] 15%|█▌ | 76/500 [00:05<00:30, 13.78it/s] 16%|█▌ | 78/500 [00:05<00:29, 14.12it/s] 16%|█▌ | 80/500 [00:05<00:28, 14.84it/s] 16%|█▋ | 82/500 [00:05<00:27, 15.01it/s] 17%|█▋ | 84/500 [00:05<00:29, 14.29it/s] 17%|█▋ | 86/500 [00:06<00:28, 14.30it/s] 18%|█▊ | 88/500 [00:06<00:28, 14.66it/s] 18%|█▊ | 90/500 [00:06<00:28, 14.33it/s] 18%|█▊ | 92/500 [00:06<00:28, 14.34it/s] 19%|█▉ | 94/500 [00:06<00:29, 13.64it/s] 19%|█▉ | 96/500 [00:06<00:29, 13.61it/s] 20%|█▉ | 98/500 [00:06<00:29, 13.70it/s] 20%|██ | 100/500 [00:07<00:28, 14.18it/s] 20%|██ | 102/500 [00:07<00:27, 14.61it/s] 21%|██ | 104/500 [00:07<00:26, 15.03it/s] 21%|██ | 106/500 [00:07<00:25, 15.47it/s] 22%|██▏ | 108/500 [00:07<00:26, 15.05it/s] 22%|██▏ | 110/500 [00:07<00:27, 14.32it/s] 22%|██▏ | 112/500 [00:07<00:27, 13.97it/s] 23%|██▎ | 114/500 [00:08<00:30, 12.65it/s] 23%|██▎ | 116/500 [00:08<00:28, 13.27it/s] 24%|██▎ | 118/500 [00:08<00:27, 13.93it/s] 24%|██▍ | 120/500 [00:08<00:27, 13.69it/s] 24%|██▍ | 122/500 [00:08<00:26, 14.39it/s] 25%|██▍ | 124/500 [00:08<00:26, 14.17it/s] 25%|██▌ | 126/500 [00:08<00:26, 14.27it/s] 26%|██▌ | 128/500 [00:09<00:27, 13.33it/s] 26%|██▌ | 130/500 [00:09<00:27, 13.28it/s] 26%|██▋ | 132/500 [00:09<00:26, 13.84it/s] 27%|██▋ | 134/500 [00:09<00:25, 14.20it/s] 27%|██▋ | 136/500 [00:09<00:25, 14.28it/s] 28%|██▊ | 138/500 [00:09<00:24, 14.68it/s] 28%|██▊ | 140/500 [00:09<00:25, 14.39it/s] 28%|██▊ | 142/500 [00:10<00:23, 14.92it/s] 29%|██▉ | 144/500 [00:10<00:25, 14.23it/s] 29%|██▉ | 146/500 [00:10<00:25, 13.90it/s] 30%|██▉ | 148/500 [00:10<00:24, 14.17it/s] 30%|███ | 150/500 [00:10<00:26, 13.39it/s] 30%|███ | 152/500 [00:10<00:26, 13.36it/s] 31%|███ | 154/500 [00:10<00:24, 14.34it/s] 31%|███ | 156/500 [00:10<00:22, 15.18it/s] 32%|███▏ | 158/500 [00:11<00:22, 15.47it/s] 32%|███▏ | 160/500 [00:11<00:24, 14.15it/s] 32%|███▏ | 162/500 [00:11<00:24, 13.98it/s] 33%|███▎ | 164/500 [00:11<00:24, 13.85it/s] 33%|███▎ | 166/500 [00:11<00:23, 14.32it/s] 34%|███▎ | 168/500 [00:11<00:22, 14.72it/s] 34%|███▍ | 170/500 [00:11<00:21, 15.16it/s] 34%|███▍ | 172/500 [00:12<00:21, 15.27it/s] 35%|███▍ | 174/500 [00:12<00:22, 14.19it/s] 35%|███▌ | 176/500 [00:12<00:23, 13.92it/s] 36%|███▌ | 178/500 [00:12<00:23, 13.90it/s] 36%|███▌ | 180/500 [00:12<00:22, 13.93it/s] 36%|███▋ | 182/500 [00:12<00:22, 14.11it/s] 37%|███▋ | 184/500 [00:12<00:22, 13.94it/s] 37%|███▋ | 186/500 [00:13<00:21, 14.30it/s] 38%|███▊ | 188/500 [00:13<00:22, 13.85it/s] 38%|███▊ | 190/500 [00:13<00:22, 14.06it/s] 38%|███▊ | 192/500 [00:13<00:22, 13.77it/s] 39%|███▉ | 194/500 [00:13<00:21, 13.94it/s] 39%|███▉ | 196/500 [00:13<00:21, 13.86it/s] 40%|███▉ | 198/500 [00:13<00:22, 13.54it/s] 40%|████ | 200/500 [00:14<00:21, 14.06it/s] 40%|████ | 202/500 [00:14<00:20, 14.36it/s] 41%|████ | 204/500 [00:14<00:19, 14.82it/s] 41%|████ | 206/500 [00:14<00:19, 14.83it/s] 42%|████▏ | 208/500 [00:14<00:19, 15.06it/s] 42%|████▏ | 210/500 [00:14<00:18, 16.09it/s] 42%|████▏ | 212/500 [00:14<00:19, 15.06it/s] 43%|████▎ | 214/500 [00:15<00:19, 14.98it/s] 43%|████▎ | 216/500 [00:15<00:18, 15.28it/s] 44%|████▎ | 218/500 [00:15<00:19, 14.72it/s] 44%|████▍ | 220/500 [00:15<00:19, 14.36it/s] 44%|████▍ | 222/500 [00:15<00:19, 14.15it/s] 45%|████▍ | 224/500 [00:15<00:19, 14.17it/s] 45%|████▌ | 226/500 [00:15<00:20, 13.64it/s] 46%|████▌ | 228/500 [00:16<00:19, 13.77it/s] 46%|████▌ | 230/500 [00:16<00:18, 14.50it/s] 46%|████▋ | 232/500 [00:16<00:18, 14.12it/s] 47%|████▋ | 234/500 [00:16<00:18, 14.60it/s] 47%|████▋ | 236/500 [00:16<00:18, 14.48it/s] 48%|████▊ | 238/500 [00:16<00:18, 14.14it/s] 48%|████▊ | 240/500 [00:16<00:18, 14.24it/s] 48%|████▊ | 242/500 [00:17<00:18, 14.30it/s] 49%|████▉ | 244/500 [00:17<00:18, 13.70it/s] 49%|████▉ | 246/500 [00:17<00:18, 13.62it/s] 50%|████▉ | 248/500 [00:17<00:18, 13.79it/s] 50%|█████ | 250/500 [00:17<00:17, 13.91it/s] 50%|█████ | 252/500 [00:17<00:18, 13.64it/s] 51%|█████ | 254/500 [00:17<00:18, 13.43it/s] 51%|█████ | 256/500 [00:18<00:17, 13.56it/s] 52%|█████▏ | 258/500 [00:18<00:18, 13.42it/s] 52%|█████▏ | 260/500 [00:18<00:17, 13.54it/s] 52%|█████▏ | 262/500 [00:18<00:17, 13.99it/s] 53%|█████▎ | 264/500 [00:18<00:16, 14.39it/s] 53%|█████▎ | 266/500 [00:18<00:15, 15.08it/s] 54%|█████▎ | 268/500 [00:18<00:15, 15.43it/s] 54%|█████▍ | 270/500 [00:18<00:15, 14.96it/s] 54%|█████▍ | 272/500 [00:19<00:15, 15.16it/s] 55%|█████▍ | 274/500 [00:19<00:14, 15.33it/s] 55%|█████▌ | 276/500 [00:19<00:15, 14.37it/s] 56%|█████▌ | 278/500 [00:19<00:15, 14.32it/s] 56%|█████▌ | 280/500 [00:19<00:15, 14.52it/s] 56%|█████▋ | 282/500 [00:19<00:14, 14.92it/s] 57%|█████▋ | 284/500 [00:19<00:13, 15.66it/s] 57%|█████▋ | 286/500 [00:20<00:13, 15.91it/s] 58%|█████▊ | 288/500 [00:20<00:13, 16.16it/s] 58%|█████▊ | 290/500 [00:20<00:12, 16.48it/s] 58%|█████▊ | 292/500 [00:20<00:13, 15.14it/s] 59%|█████▉ | 294/500 [00:20<00:13, 14.76it/s] 59%|█████▉ | 296/500 [00:20<00:14, 14.39it/s] 60%|█████▉ | 298/500 [00:20<00:13, 14.64it/s] 60%|██████ | 300/500 [00:20<00:13, 15.35it/s] 60%|██████ | 302/500 [00:21<00:12, 15.50it/s] 61%|██████ | 304/500 [00:21<00:13, 14.76it/s] 61%|██████ | 306/500 [00:21<00:13, 14.44it/s] 62%|██████▏ | 308/500 [00:21<00:13, 13.97it/s] 62%|██████▏ | 310/500 [00:21<00:13, 14.61it/s] 62%|██████▏ | 312/500 [00:21<00:13, 14.41it/s] 63%|██████▎ | 314/500 [00:21<00:13, 14.08it/s] 63%|██████▎ | 316/500 [00:22<00:13, 14.00it/s] 64%|██████▎ | 318/500 [00:22<00:12, 14.37it/s] 64%|██████▍ | 320/500 [00:22<00:12, 14.10it/s] 64%|██████▍ | 322/500 [00:22<00:13, 13.66it/s] 65%|██████▍ | 324/500 [00:22<00:13, 13.45it/s] 65%|██████▌ | 326/500 [00:22<00:13, 13.38it/s] 66%|██████▌ | 328/500 [00:22<00:12, 13.60it/s] 66%|██████▌ | 330/500 [00:23<00:12, 13.96it/s] 66%|██████▋ | 332/500 [00:23<00:11, 14.12it/s] 67%|██████▋ | 334/500 [00:23<00:11, 14.62it/s] 67%|██████▋ | 336/500 [00:23<00:11, 14.47it/s] 68%|██████▊ | 338/500 [00:23<00:11, 14.68it/s] 68%|██████▊ | 340/500 [00:23<00:10, 15.37it/s] 68%|██████▊ | 342/500 [00:23<00:10, 14.65it/s] 69%|██████▉ | 344/500 [00:24<00:10, 14.67it/s] 69%|██████▉ | 346/500 [00:24<00:10, 14.61it/s] 70%|██████▉ | 348/500 [00:24<00:10, 13.87it/s] 70%|███████ | 350/500 [00:24<00:11, 13.19it/s] 70%|███████ | 352/500 [00:24<00:10, 13.71it/s] 71%|███████ | 354/500 [00:24<00:10, 14.15it/s] 71%|███████ | 356/500 [00:24<00:10, 13.57it/s] 72%|███████▏ | 358/500 [00:25<00:10, 13.99it/s] 72%|███████▏ | 360/500 [00:25<00:10, 13.86it/s] 72%|███████▏ | 362/500 [00:25<00:09, 13.85it/s] 73%|███████▎ | 364/500 [00:25<00:09, 14.35it/s] 73%|███████▎ | 366/500 [00:25<00:09, 14.14it/s] 74%|███████▎ | 368/500 [00:25<00:09, 14.29it/s] 74%|███████▍ | 370/500 [00:25<00:09, 14.09it/s] 74%|███████▍ | 372/500 [00:26<00:09, 13.76it/s] 75%|███████▍ | 374/500 [00:26<00:09, 13.03it/s] 75%|███████▌ | 376/500 [00:26<00:09, 13.37it/s] 76%|███████▌ | 378/500 [00:26<00:09, 13.41it/s] 76%|███████▌ | 380/500 [00:26<00:09, 13.16it/s] 76%|███████▋ | 382/500 [00:26<00:08, 13.49it/s] 77%|███████▋ | 384/500 [00:26<00:08, 14.19it/s] 77%|███████▋ | 386/500 [00:27<00:07, 14.54it/s] 78%|███████▊ | 388/500 [00:27<00:07, 15.13it/s] 78%|███████▊ | 390/500 [00:27<00:07, 15.61it/s] 78%|███████▊ | 392/500 [00:27<00:07, 15.28it/s] 79%|███████▉ | 394/500 [00:27<00:07, 14.06it/s] 79%|███████▉ | 396/500 [00:27<00:07, 14.15it/s] 80%|███████▉ | 398/500 [00:27<00:06, 14.78it/s] 80%|████████ | 400/500 [00:28<00:06, 14.81it/s] 80%|████████ | 402/500 [00:28<00:06, 15.76it/s] 81%|████████ | 404/500 [00:28<00:06, 15.78it/s] 81%|████████ | 406/500 [00:28<00:06, 15.35it/s] 82%|████████▏ | 408/500 [00:28<00:06, 15.32it/s] 82%|████████▏ | 410/500 [00:28<00:05, 15.37it/s] 82%|████████▏ | 412/500 [00:28<00:06, 14.40it/s] 83%|████████▎ | 414/500 [00:28<00:05, 14.47it/s] 83%|████████▎ | 416/500 [00:29<00:05, 14.46it/s] 84%|████████▎ | 418/500 [00:29<00:05, 15.11it/s] 84%|████████▍ | 420/500 [00:29<00:05, 14.56it/s] 84%|████████▍ | 422/500 [00:29<00:05, 14.84it/s] 85%|████████▍ | 424/500 [00:29<00:05, 14.51it/s] 85%|████████▌ | 426/500 [00:29<00:05, 14.25it/s] 86%|████████▌ | 428/500 [00:29<00:05, 13.39it/s] 86%|████████▌ | 430/500 [00:30<00:05, 13.12it/s] 86%|████████▋ | 432/500 [00:30<00:05, 12.68it/s] 87%|████████▋ | 434/500 [00:30<00:05, 12.66it/s] 87%|████████▋ | 436/500 [00:30<00:04, 13.30it/s] 88%|████████▊ | 438/500 [00:30<00:04, 13.84it/s] 88%|████████▊ | 440/500 [00:30<00:04, 14.15it/s] 88%|████████▊ | 442/500 [00:30<00:04, 14.31it/s] 89%|████████▉ | 444/500 [00:31<00:03, 14.35it/s] 89%|████████▉ | 446/500 [00:31<00:03, 14.27it/s] 90%|████████▉ | 448/500 [00:31<00:03, 14.13it/s] 90%|█████████ | 450/500 [00:31<00:03, 14.30it/s] 90%|█████████ | 452/500 [00:31<00:03, 14.44it/s] 91%|█████████ | 454/500 [00:31<00:03, 13.70it/s] 91%|█████████ | 456/500 [00:31<00:03, 13.83it/s] 92%|█████████▏| 458/500 [00:32<00:02, 14.44it/s] 92%|█████████▏| 460/500 [00:32<00:02, 14.38it/s] 92%|█████████▏| 462/500 [00:32<00:02, 14.51it/s] 93%|█████████▎| 464/500 [00:32<00:02, 14.25it/s] 93%|█████████▎| 466/500 [00:32<00:02, 14.05it/s] 94%|█████████▎| 468/500 [00:32<00:02, 13.90it/s] 94%|█████████▍| 470/500 [00:32<00:02, 14.46it/s] 94%|█████████▍| 472/500 [00:33<00:01, 14.94it/s] 95%|█████████▍| 474/500 [00:33<00:01, 14.74it/s] 95%|█████████▌| 476/500 [00:33<00:01, 14.87it/s] 96%|█████████▌| 478/500 [00:33<00:01, 13.96it/s] 96%|█████████▌| 480/500 [00:33<00:01, 13.98it/s] 96%|█████████▋| 482/500 [00:33<00:01, 14.12it/s] 97%|█████████▋| 484/500 [00:33<00:01, 14.38it/s] 97%|█████████▋| 486/500 [00:34<00:00, 14.48it/s] 98%|█████████▊| 488/500 [00:34<00:00, 14.21it/s] 98%|█████████▊| 490/500 [00:34<00:00, 13.75it/s] 98%|█████████▊| 492/500 [00:34<00:00, 14.30it/s] 99%|█████████▉| 494/500 [00:34<00:00, 14.14it/s] 99%|█████████▉| 496/500 [00:34<00:00, 14.52it/s] 100%|█████████▉| 498/500 [00:34<00:00, 14.45it/s] 100%|██████████| 500/500 [00:35<00:00, 14.25it/s] 40%|████ | 4/10 [02:35<03:45, 37.50s/it] 0%| | 0/500 [00:00<?, ?it/s] 0%| | 1/500 [00:00<00:50, 9.82it/s] 1%| | 3/500 [00:00<00:40, 12.17it/s] 1%| | 5/500 [00:00<00:36, 13.55it/s] 1%|▏ | 7/500 [00:00<00:34, 14.43it/s] 2%|▏ | 9/500 [00:00<00:35, 13.64it/s] 2%|▏ | 11/500 [00:00<00:37, 13.05it/s] 3%|▎ | 13/500 [00:00<00:35, 13.57it/s] 3%|▎ | 15/500 [00:01<00:35, 13.79it/s] 3%|▎ | 17/500 [00:01<00:33, 14.58it/s] 4%|▍ | 19/500 [00:01<00:33, 14.44it/s] 4%|▍ | 21/500 [00:01<00:32, 14.91it/s] 5%|▍ | 23/500 [00:01<00:32, 14.79it/s] 5%|▌ | 25/500 [00:01<00:32, 14.44it/s] 5%|▌ | 27/500 [00:01<00:32, 14.54it/s] 6%|▌ | 29/500 [00:02<00:32, 14.71it/s] 6%|▌ | 31/500 [00:02<00:33, 14.00it/s] 7%|▋ | 33/500 [00:02<00:31, 14.77it/s] 7%|▋ | 35/500 [00:02<00:31, 15.00it/s] 7%|▋ | 37/500 [00:02<00:31, 14.63it/s] 8%|▊ | 39/500 [00:02<00:31, 14.81it/s] 8%|▊ | 41/500 [00:02<00:30, 15.21it/s] 9%|▊ | 43/500 [00:03<00:31, 14.47it/s] 9%|▉ | 45/500 [00:03<00:31, 14.24it/s] 9%|▉ | 47/500 [00:03<00:33, 13.35it/s] 10%|▉ | 49/500 [00:03<00:34, 13.01it/s] 10%|█ | 51/500 [00:03<00:34, 12.92it/s] 11%|█ | 53/500 [00:03<00:34, 13.07it/s] 11%|█ | 55/500 [00:03<00:31, 13.92it/s] 11%|█▏ | 57/500 [00:04<00:29, 14.86it/s] 12%|█▏ | 59/500 [00:04<00:29, 14.73it/s] 12%|█▏ | 61/500 [00:04<00:30, 14.34it/s] 13%|█▎ | 63/500 [00:04<00:29, 14.92it/s] 13%|█▎ | 65/500 [00:04<00:29, 14.99it/s] 13%|█▎ | 67/500 [00:04<00:28, 15.15it/s] 14%|█▍ | 69/500 [00:04<00:28, 14.96it/s] 14%|█▍ | 71/500 [00:05<00:31, 13.79it/s] 15%|█▍ | 73/500 [00:05<00:31, 13.60it/s] 15%|█▌ | 75/500 [00:05<00:33, 12.87it/s] 15%|█▌ | 77/500 [00:05<00:30, 13.65it/s] 16%|█▌ | 79/500 [00:05<00:30, 14.02it/s] 16%|█▌ | 81/500 [00:05<00:29, 14.33it/s] 17%|█▋ | 83/500 [00:05<00:28, 14.39it/s] 17%|█▋ | 85/500 [00:06<00:28, 14.31it/s] 17%|█▋ | 87/500 [00:06<00:28, 14.41it/s] 18%|█▊ | 89/500 [00:06<00:28, 14.62it/s] 18%|█▊ | 91/500 [00:06<00:27, 14.83it/s] 19%|█▊ | 93/500 [00:06<00:25, 15.89it/s] 19%|█▉ | 95/500 [00:06<00:26, 15.08it/s] 19%|█▉ | 97/500 [00:06<00:26, 15.42it/s] 20%|█▉ | 99/500 [00:06<00:25, 15.58it/s] 20%|██ | 101/500 [00:07<00:25, 15.53it/s] 21%|██ | 103/500 [00:07<00:26, 15.14it/s] 21%|██ | 105/500 [00:07<00:25, 15.37it/s] 21%|██▏ | 107/500 [00:07<00:25, 15.32it/s] 22%|██▏ | 109/500 [00:07<00:25, 15.13it/s] 22%|██▏ | 111/500 [00:07<00:26, 14.88it/s] 23%|██▎ | 113/500 [00:07<00:25, 15.07it/s] 23%|██▎ | 115/500 [00:07<00:25, 14.81it/s] 23%|██▎ | 117/500 [00:08<00:26, 14.62it/s] 24%|██▍ | 119/500 [00:08<00:27, 13.76it/s] 24%|██▍ | 121/500 [00:08<00:26, 14.07it/s] 25%|██▍ | 123/500 [00:08<00:27, 13.88it/s] 25%|██▌ | 125/500 [00:08<00:27, 13.74it/s] 25%|██▌ | 127/500 [00:08<00:27, 13.81it/s] 26%|██▌ | 129/500 [00:08<00:26, 14.10it/s] 26%|██▌ | 131/500 [00:09<00:28, 12.99it/s] 27%|██▋ | 133/500 [00:09<00:28, 12.85it/s] 27%|██▋ | 135/500 [00:09<00:29, 12.39it/s] 27%|██▋ | 137/500 [00:09<00:27, 12.98it/s] 28%|██▊ | 139/500 [00:09<00:25, 13.89it/s] 28%|██▊ | 141/500 [00:09<00:25, 13.91it/s] 29%|██▊ | 143/500 [00:10<00:25, 13.88it/s] 29%|██▉ | 145/500 [00:10<00:26, 13.18it/s] 29%|██▉ | 147/500 [00:10<00:25, 13.90it/s] 30%|██▉ | 149/500 [00:10<00:24, 14.58it/s] 30%|███ | 151/500 [00:10<00:22, 15.25it/s] 31%|███ | 153/500 [00:10<00:22, 15.21it/s] 31%|███ | 155/500 [00:10<00:21, 15.96it/s] 31%|███▏ | 157/500 [00:10<00:22, 15.50it/s] 32%|███▏ | 159/500 [00:11<00:21, 15.71it/s] 32%|███▏ | 161/500 [00:11<00:23, 14.51it/s] 33%|███▎ | 163/500 [00:11<00:23, 14.36it/s] 33%|███▎ | 165/500 [00:11<00:24, 13.68it/s] 33%|███▎ | 167/500 [00:11<00:24, 13.85it/s] 34%|███▍ | 169/500 [00:11<00:24, 13.58it/s] 34%|███▍ | 171/500 [00:12<00:24, 13.67it/s] 35%|███▍ | 173/500 [00:12<00:24, 13.60it/s] 35%|███▌ | 175/500 [00:12<00:24, 13.09it/s] 35%|███▌ | 177/500 [00:12<00:24, 13.44it/s] 36%|███▌ | 179/500 [00:12<00:24, 13.37it/s] 36%|███▌ | 181/500 [00:12<00:22, 14.00it/s] 37%|███▋ | 183/500 [00:12<00:27, 11.71it/s] 37%|███▋ | 185/500 [00:13<00:25, 12.54it/s] 37%|███▋ | 187/500 [00:13<00:24, 12.81it/s] 38%|███▊ | 189/500 [00:13<00:22, 13.75it/s] 38%|███▊ | 191/500 [00:13<00:22, 13.54it/s] 39%|███▊ | 193/500 [00:13<00:22, 13.88it/s] 39%|███▉ | 195/500 [00:13<00:22, 13.56it/s] 39%|███▉ | 197/500 [00:13<00:22, 13.69it/s] 40%|███▉ | 199/500 [00:14<00:22, 13.63it/s] 40%|████ | 201/500 [00:14<00:21, 13.86it/s] 41%|████ | 203/500 [00:14<00:21, 14.06it/s] 41%|████ | 205/500 [00:14<00:20, 14.55it/s] 41%|████▏ | 207/500 [00:14<00:19, 14.89it/s] 42%|████▏ | 209/500 [00:14<00:19, 14.78it/s] 42%|████▏ | 211/500 [00:14<00:19, 15.18it/s] 43%|████▎ | 213/500 [00:15<00:19, 14.87it/s] 43%|████▎ | 215/500 [00:15<00:19, 14.95it/s] 43%|████▎ | 217/500 [00:15<00:19, 14.50it/s] 44%|████▍ | 219/500 [00:15<00:20, 13.76it/s] 44%|████▍ | 221/500 [00:15<00:19, 14.10it/s] 45%|████▍ | 223/500 [00:15<00:19, 14.03it/s] 45%|████▌ | 225/500 [00:15<00:18, 14.50it/s] 45%|████▌ | 227/500 [00:16<00:18, 14.50it/s] 46%|████▌ | 229/500 [00:16<00:19, 13.83it/s] 46%|████▌ | 231/500 [00:16<00:19, 13.87it/s] 47%|████▋ | 233/500 [00:16<00:19, 14.05it/s] 47%|████▋ | 235/500 [00:16<00:18, 14.21it/s] 47%|████▋ | 237/500 [00:16<00:18, 14.58it/s] 48%|████▊ | 239/500 [00:16<00:18, 14.37it/s] 48%|████▊ | 241/500 [00:17<00:17, 14.45it/s] 49%|████▊ | 243/500 [00:17<00:17, 14.87it/s] 49%|████▉ | 245/500 [00:17<00:17, 14.86it/s] 49%|████▉ | 247/500 [00:17<00:17, 14.27it/s] 50%|████▉ | 249/500 [00:17<00:17, 14.54it/s] 50%|█████ | 251/500 [00:17<00:17, 14.33it/s] 51%|█████ | 253/500 [00:17<00:17, 14.39it/s] 51%|█████ | 255/500 [00:17<00:17, 14.34it/s] 51%|█████▏ | 257/500 [00:18<00:16, 14.58it/s] 52%|█████▏ | 259/500 [00:18<00:15, 15.12it/s] 52%|█████▏ | 261/500 [00:18<00:15, 15.55it/s] 53%|█████▎ | 263/500 [00:18<00:15, 15.27it/s] 53%|█████▎ | 265/500 [00:18<00:15, 14.75it/s] 53%|█████▎ | 267/500 [00:18<00:15, 15.09it/s] 54%|█████▍ | 269/500 [00:18<00:14, 15.67it/s] 54%|█████▍ | 271/500 [00:18<00:14, 15.99it/s] 55%|█████▍ | 273/500 [00:19<00:14, 15.68it/s] 55%|█████▌ | 275/500 [00:19<00:15, 14.80it/s] 55%|█████▌ | 277/500 [00:19<00:16, 13.34it/s] 56%|█████▌ | 279/500 [00:19<00:15, 13.96it/s] 56%|█████▌ | 281/500 [00:19<00:14, 14.98it/s] 57%|█████▋ | 283/500 [00:19<00:14, 15.47it/s] 57%|█████▋ | 285/500 [00:19<00:13, 15.56it/s] 57%|█████▋ | 287/500 [00:20<00:13, 15.50it/s] 58%|█████▊ | 289/500 [00:20<00:13, 15.57it/s] 58%|█████▊ | 291/500 [00:20<00:13, 15.11it/s] 59%|█████▊ | 293/500 [00:20<00:13, 15.14it/s] 59%|█████▉ | 295/500 [00:20<00:13, 14.71it/s] 59%|█████▉ | 297/500 [00:20<00:14, 14.28it/s] 60%|█████▉ | 299/500 [00:20<00:14, 14.14it/s] 60%|██████ | 301/500 [00:21<00:13, 15.04it/s] 61%|██████ | 303/500 [00:21<00:12, 15.95it/s] 61%|██████ | 305/500 [00:21<00:12, 15.69it/s] 61%|██████▏ | 307/500 [00:21<00:12, 15.34it/s] 62%|██████▏ | 309/500 [00:21<00:12, 15.22it/s] 62%|██████▏ | 311/500 [00:21<00:12, 14.93it/s] 63%|██████▎ | 313/500 [00:21<00:12, 15.14it/s] 63%|██████▎ | 315/500 [00:21<00:12, 14.66it/s] 63%|██████▎ | 317/500 [00:22<00:12, 14.86it/s] 64%|██████▍ | 319/500 [00:22<00:12, 14.64it/s] 64%|██████▍ | 321/500 [00:22<00:12, 14.32it/s] 65%|██████▍ | 323/500 [00:22<00:12, 14.08it/s] 65%|██████▌ | 325/500 [00:22<00:12, 14.44it/s] 65%|██████▌ | 327/500 [00:22<00:12, 14.23it/s] 66%|██████▌ | 329/500 [00:22<00:11, 14.36it/s] 66%|██████▌ | 331/500 [00:23<00:11, 14.28it/s] 67%|██████▋ | 333/500 [00:23<00:11, 14.39it/s] 67%|██████▋ | 335/500 [00:23<00:11, 14.40it/s] 67%|██████▋ | 337/500 [00:23<00:11, 14.07it/s] 68%|██████▊ | 339/500 [00:23<00:12, 12.54it/s] 68%|██████▊ | 341/500 [00:23<00:12, 13.00it/s] 69%|██████▊ | 343/500 [00:23<00:11, 13.59it/s] 69%|██████▉ | 345/500 [00:24<00:11, 13.66it/s] 69%|██████▉ | 347/500 [00:24<00:10, 14.05it/s] 70%|██████▉ | 349/500 [00:24<00:10, 14.85it/s] 70%|███████ | 351/500 [00:24<00:10, 14.63it/s] 71%|███████ | 353/500 [00:24<00:10, 14.20it/s] 71%|███████ | 355/500 [00:24<00:10, 14.05it/s] 71%|███████▏ | 357/500 [00:24<00:10, 14.01it/s] 72%|███████▏ | 359/500 [00:25<00:09, 14.11it/s] 72%|███████▏ | 361/500 [00:25<00:09, 14.20it/s] 73%|███████▎ | 363/500 [00:25<00:09, 14.66it/s] 73%|███████▎ | 365/500 [00:25<00:09, 14.89it/s] 73%|███████▎ | 367/500 [00:25<00:09, 14.22it/s] 74%|███████▍ | 369/500 [00:25<00:08, 15.01it/s] 74%|███████▍ | 371/500 [00:25<00:08, 14.77it/s] 75%|███████▍ | 373/500 [00:26<00:08, 14.64it/s] 75%|███████▌ | 375/500 [00:26<00:09, 13.80it/s] 75%|███████▌ | 377/500 [00:26<00:09, 13.19it/s] 76%|███████▌ | 379/500 [00:26<00:08, 13.92it/s] 76%|███████▌ | 381/500 [00:26<00:08, 14.36it/s] 77%|███████▋ | 383/500 [00:26<00:08, 14.20it/s] 77%|███████▋ | 385/500 [00:26<00:07, 14.86it/s] 77%|███████▋ | 387/500 [00:27<00:07, 14.51it/s] 78%|███████▊ | 389/500 [00:27<00:07, 14.88it/s] 78%|███████▊ | 391/500 [00:27<00:07, 15.06it/s] 79%|███████▊ | 393/500 [00:27<00:06, 15.56it/s] 79%|███████▉ | 395/500 [00:27<00:06, 15.16it/s] 79%|███████▉ | 397/500 [00:27<00:07, 13.92it/s] 80%|███████▉ | 399/500 [00:27<00:07, 13.71it/s] 80%|████████ | 401/500 [00:28<00:07, 13.60it/s] 81%|████████ | 403/500 [00:28<00:06, 13.93it/s] 81%|████████ | 405/500 [00:28<00:06, 14.08it/s] 81%|████████▏ | 407/500 [00:28<00:06, 14.29it/s] 82%|████████▏ | 409/500 [00:28<00:06, 14.12it/s] 82%|████████▏ | 411/500 [00:28<00:06, 14.72it/s] 83%|████████▎ | 413/500 [00:28<00:05, 14.58it/s] 83%|████████▎ | 415/500 [00:28<00:06, 14.13it/s] 83%|████████▎ | 417/500 [00:29<00:06, 13.53it/s] 84%|████████▍ | 419/500 [00:29<00:05, 14.24it/s] 84%|████████▍ | 421/500 [00:29<00:05, 14.07it/s] 85%|████████▍ | 423/500 [00:29<00:05, 14.45it/s] 85%|████████▌ | 425/500 [00:29<00:05, 14.45it/s] 85%|████████▌ | 427/500 [00:29<00:05, 14.12it/s] 86%|████████▌ | 429/500 [00:29<00:05, 13.87it/s] 86%|████████▌ | 431/500 [00:30<00:04, 14.07it/s] 87%|████████▋ | 433/500 [00:30<00:04, 14.23it/s] 87%|████████▋ | 435/500 [00:30<00:04, 13.93it/s] 87%|████████▋ | 437/500 [00:30<00:04, 13.85it/s] 88%|████████▊ | 439/500 [00:30<00:04, 14.41it/s] 88%|████████▊ | 441/500 [00:30<00:04, 13.64it/s] 89%|████████▊ | 443/500 [00:31<00:04, 13.10it/s] 89%|████████▉ | 445/500 [00:31<00:04, 12.79it/s] 89%|████████▉ | 447/500 [00:31<00:03, 13.43it/s] 90%|████████▉ | 449/500 [00:31<00:03, 14.42it/s] 90%|█████████ | 451/500 [00:31<00:03, 13.79it/s] 91%|█████████ | 453/500 [00:31<00:03, 13.79it/s] 91%|█████████ | 455/500 [00:31<00:03, 13.23it/s] 91%|█████████▏| 457/500 [00:32<00:03, 13.71it/s] 92%|█████████▏| 459/500 [00:32<00:02, 14.16it/s] 92%|█████████▏| 461/500 [00:32<00:02, 13.50it/s] 93%|█████████▎| 463/500 [00:32<00:02, 13.97it/s] 93%|█████████▎| 465/500 [00:32<00:02, 14.51it/s] 93%|█████████▎| 467/500 [00:32<00:02, 15.15it/s] 94%|█████████▍| 469/500 [00:32<00:02, 14.23it/s] 94%|█████████▍| 471/500 [00:33<00:02, 14.06it/s] 95%|█████████▍| 473/500 [00:33<00:02, 13.22it/s] 95%|█████████▌| 475/500 [00:33<00:01, 13.60it/s] 95%|█████████▌| 477/500 [00:33<00:01, 14.23it/s] 96%|█████████▌| 479/500 [00:33<00:01, 14.94it/s] 96%|█████████▌| 481/500 [00:33<00:01, 14.62it/s] 97%|█████████▋| 483/500 [00:33<00:01, 14.61it/s] 97%|█████████▋| 485/500 [00:33<00:01, 14.64it/s] 97%|█████████▋| 487/500 [00:34<00:00, 14.25it/s] 98%|█████████▊| 489/500 [00:34<00:00, 14.76it/s] 98%|█████████▊| 491/500 [00:34<00:00, 14.92it/s] 99%|█████████▊| 493/500 [00:34<00:00, 15.38it/s] 99%|█████████▉| 495/500 [00:34<00:00, 15.02it/s] 99%|█████████▉| 497/500 [00:34<00:00, 14.94it/s] 100%|██████████| 500/500 [00:35<00:00, 14.28it/s] 50%|█████ | 5/10 [03:11<03:03, 36.62s/it] 0%| | 0/500 [00:00<?, ?it/s] 0%| | 2/500 [00:00<00:39, 12.54it/s] 1%| | 4/500 [00:00<00:34, 14.53it/s] 1%| | 6/500 [00:00<00:33, 14.93it/s] 2%|▏ | 8/500 [00:00<00:34, 14.16it/s] 2%|▏ | 10/500 [00:00<00:32, 14.88it/s] 2%|▏ | 12/500 [00:00<00:34, 14.33it/s] 3%|▎ | 14/500 [00:00<00:34, 14.08it/s] 3%|▎ | 16/500 [00:01<00:35, 13.77it/s] 4%|▎ | 18/500 [00:01<00:34, 14.12it/s] 4%|▍ | 20/500 [00:01<00:33, 14.42it/s] 4%|▍ | 22/500 [00:01<00:32, 14.51it/s] 5%|▍ | 24/500 [00:01<00:32, 14.82it/s] 5%|▌ | 26/500 [00:01<00:31, 14.94it/s] 6%|▌ | 28/500 [00:01<00:32, 14.50it/s] 6%|▌ | 30/500 [00:02<00:32, 14.34it/s] 6%|▋ | 32/500 [00:02<00:32, 14.29it/s] 7%|▋ | 34/500 [00:02<00:30, 15.19it/s] 7%|▋ | 36/500 [00:02<00:31, 14.54it/s] 8%|▊ | 38/500 [00:02<00:31, 14.45it/s] 8%|▊ | 40/500 [00:02<00:30, 14.88it/s] 8%|▊ | 42/500 [00:02<00:31, 14.52it/s] 9%|▉ | 44/500 [00:03<00:34, 13.39it/s] 9%|▉ | 46/500 [00:03<00:34, 13.31it/s] 10%|▉ | 48/500 [00:03<00:32, 13.74it/s] 10%|█ | 50/500 [00:03<00:32, 13.74it/s] 10%|█ | 52/500 [00:03<00:37, 11.87it/s] 11%|█ | 54/500 [00:03<00:38, 11.60it/s] 11%|█ | 56/500 [00:04<00:43, 10.32it/s] 12%|█▏ | 58/500 [00:04<00:44, 10.02it/s] 12%|█▏ | 60/500 [00:04<00:44, 9.82it/s] 12%|█▏ | 62/500 [00:04<00:48, 9.10it/s] 13%|█▎ | 64/500 [00:05<00:47, 9.19it/s] 13%|█▎ | 66/500 [00:05<00:46, 9.41it/s] 14%|█▎ | 68/500 [00:05<00:44, 9.72it/s] 14%|█▍ | 69/500 [00:05<00:46, 9.29it/s] 14%|█▍ | 71/500 [00:05<00:45, 9.36it/s] 14%|█▍ | 72/500 [00:05<00:45, 9.37it/s] 15%|█▍ | 74/500 [00:06<00:41, 10.35it/s] 15%|█▌ | 76/500 [00:06<00:38, 10.98it/s] 16%|█▌ | 78/500 [00:06<00:38, 11.02it/s] 16%|█▌ | 80/500 [00:06<00:39, 10.62it/s] 16%|█▋ | 82/500 [00:06<00:39, 10.66it/s] 17%|█▋ | 84/500 [00:06<00:36, 11.48it/s] 17%|█▋ | 86/500 [00:07<00:39, 10.42it/s] 18%|█▊ | 88/500 [00:07<00:38, 10.59it/s] 18%|█▊ | 90/500 [00:07<00:43, 9.53it/s] 18%|█▊ | 91/500 [00:07<00:44, 9.25it/s] 18%|█▊ | 92/500 [00:07<00:44, 9.14it/s] 19%|█▊ | 93/500 [00:07<00:44, 9.11it/s] 19%|█▉ | 94/500 [00:08<00:46, 8.73it/s] 19%|█▉ | 95/500 [00:08<00:45, 8.96it/s] 19%|█▉ | 96/500 [00:08<00:47, 8.43it/s] 19%|█▉ | 97/500 [00:08<00:47, 8.40it/s] 20%|█▉ | 99/500 [00:08<00:39, 10.10it/s] 20%|██ | 100/500 [00:08<00:44, 9.08it/s] 20%|██ | 101/500 [00:08<00:46, 8.55it/s] 21%|██ | 103/500 [00:09<00:40, 9.82it/s] 21%|██ | 104/500 [00:09<00:42, 9.35it/s] 21%|██ | 105/500 [00:09<00:42, 9.30it/s] 21%|██ | 106/500 [00:09<00:44, 8.76it/s] 22%|██▏ | 108/500 [00:09<00:36, 10.74it/s] 22%|██▏ | 110/500 [00:09<00:33, 11.66it/s] 22%|██▏ | 112/500 [00:09<00:30, 12.55it/s] 23%|██▎ | 114/500 [00:09<00:31, 12.39it/s] 23%|██▎ | 116/500 [00:10<00:29, 13.06it/s] 24%|██▎ | 118/500 [00:10<00:29, 13.04it/s] 24%|██▍ | 120/500 [00:10<00:29, 13.00it/s] 24%|██▍ | 122/500 [00:10<00:27, 13.88it/s] 25%|██▍ | 124/500 [00:10<00:27, 13.89it/s] 25%|██▌ | 126/500 [00:10<00:25, 14.85it/s] 26%|██▌ | 128/500 [00:10<00:26, 14.12it/s] 26%|██▌ | 130/500 [00:11<00:25, 14.36it/s] 26%|██▋ | 132/500 [00:11<00:25, 14.53it/s] 27%|██▋ | 134/500 [00:11<00:25, 14.29it/s] 27%|██▋ | 136/500 [00:11<00:26, 13.81it/s] 28%|██▊ | 138/500 [00:11<00:24, 14.62it/s] 28%|██▊ | 140/500 [00:11<00:24, 14.78it/s] 28%|██▊ | 142/500 [00:11<00:24, 14.64it/s] 29%|██▉ | 144/500 [00:12<00:23, 15.06it/s] 29%|██▉ | 146/500 [00:12<00:23, 15.27it/s] 30%|██▉ | 148/500 [00:12<00:23, 14.73it/s] 30%|███ | 150/500 [00:12<00:25, 13.70it/s] 30%|███ | 152/500 [00:12<00:25, 13.83it/s] 31%|███ | 154/500 [00:12<00:25, 13.79it/s] 31%|███ | 156/500 [00:12<00:24, 13.83it/s] 32%|███▏ | 158/500 [00:13<00:25, 13.32it/s] 32%|███▏ | 160/500 [00:13<00:25, 13.37it/s] 32%|███▏ | 162/500 [00:13<00:24, 13.57it/s] 33%|███▎ | 164/500 [00:13<00:25, 13.22it/s] 33%|███▎ | 166/500 [00:13<00:25, 13.29it/s] 34%|███▎ | 168/500 [00:13<00:25, 13.28it/s] 34%|███▍ | 170/500 [00:13<00:24, 13.73it/s] 34%|███▍ | 172/500 [00:14<00:23, 14.00it/s] 35%|███▍ | 174/500 [00:14<00:23, 14.00it/s] 35%|███▌ | 176/500 [00:14<00:23, 13.76it/s] 36%|███▌ | 178/500 [00:14<00:24, 13.25it/s] 36%|███▌ | 180/500 [00:14<00:23, 13.44it/s] 36%|███▋ | 182/500 [00:14<00:24, 12.80it/s] 37%|███▋ | 184/500 [00:15<00:24, 13.01it/s] 37%|███▋ | 186/500 [00:15<00:23, 13.61it/s] 38%|███▊ | 188/500 [00:15<00:23, 13.12it/s] 38%|███▊ | 190/500 [00:15<00:22, 13.73it/s] 38%|███▊ | 192/500 [00:15<00:23, 13.12it/s] 39%|███▉ | 194/500 [00:15<00:23, 13.14it/s] 39%|███▉ | 196/500 [00:15<00:21, 13.95it/s] 40%|███▉ | 198/500 [00:16<00:20, 14.56it/s] 40%|████ | 200/500 [00:16<00:20, 14.76it/s] 40%|████ | 202/500 [00:16<00:20, 14.46it/s] 41%|████ | 204/500 [00:16<00:20, 14.15it/s] 41%|████ | 206/500 [00:16<00:21, 13.70it/s] 42%|████▏ | 208/500 [00:16<00:21, 13.71it/s] 42%|████▏ | 210/500 [00:16<00:21, 13.68it/s] 42%|████▏ | 212/500 [00:17<00:20, 14.18it/s] 43%|████▎ | 214/500 [00:17<00:19, 14.47it/s] 43%|████▎ | 216/500 [00:17<00:20, 14.14it/s] 44%|████▎ | 218/500 [00:17<00:19, 14.21it/s] 44%|████▍ | 220/500 [00:17<00:21, 13.01it/s] 44%|████▍ | 222/500 [00:17<00:21, 13.04it/s] 45%|████▍ | 224/500 [00:17<00:20, 13.79it/s] 45%|████▌ | 226/500 [00:18<00:20, 13.53it/s] 46%|████▌ | 228/500 [00:18<00:21, 12.69it/s] 46%|████▌ | 230/500 [00:18<00:21, 12.72it/s] 46%|████▋ | 232/500 [00:18<00:19, 13.78it/s] 47%|████▋ | 234/500 [00:18<00:19, 13.95it/s] 47%|████▋ | 236/500 [00:18<00:18, 14.05it/s] 48%|████▊ | 238/500 [00:18<00:18, 14.19it/s] 48%|████▊ | 240/500 [00:19<00:18, 13.78it/s] 48%|████▊ | 242/500 [00:19<00:21, 12.11it/s] 49%|████▉ | 244/500 [00:19<00:19, 12.93it/s] 49%|████▉ | 246/500 [00:19<00:18, 13.82it/s] 50%|████▉ | 248/500 [00:19<00:18, 13.47it/s] 50%|█████ | 250/500 [00:19<00:18, 13.59it/s] 50%|█████ | 252/500 [00:19<00:18, 13.47it/s] 51%|█████ | 254/500 [00:20<00:18, 13.20it/s] 51%|█████ | 256/500 [00:20<00:18, 13.17it/s] 52%|█████▏ | 258/500 [00:20<00:18, 13.01it/s] 52%|█████▏ | 260/500 [00:20<00:18, 13.00it/s] 52%|█████▏ | 262/500 [00:20<00:18, 12.99it/s] 53%|█████▎ | 264/500 [00:20<00:18, 13.07it/s] 53%|█████▎ | 266/500 [00:21<00:18, 12.75it/s] 54%|█████▎ | 268/500 [00:21<00:17, 13.46it/s] 54%|█████▍ | 270/500 [00:21<00:16, 13.87it/s] 54%|█████▍ | 272/500 [00:21<00:16, 14.05it/s] 55%|█████▍ | 274/500 [00:21<00:15, 14.62it/s] 55%|█████▌ | 276/500 [00:21<00:15, 14.27it/s] 56%|█████▌ | 278/500 [00:21<00:16, 13.25it/s] 56%|█████▌ | 280/500 [00:22<00:16, 13.74it/s] 56%|█████▋ | 282/500 [00:22<00:15, 14.40it/s] 57%|█████▋ | 284/500 [00:22<00:15, 13.89it/s] 57%|█████▋ | 286/500 [00:22<00:15, 13.80it/s] 58%|█████▊ | 288/500 [00:22<00:15, 13.90it/s] 58%|█████▊ | 290/500 [00:22<00:16, 12.63it/s] 58%|█████▊ | 292/500 [00:22<00:16, 12.76it/s] 59%|█████▉ | 294/500 [00:23<00:15, 13.53it/s] 59%|█████▉ | 296/500 [00:23<00:14, 13.79it/s] 60%|█████▉ | 298/500 [00:23<00:14, 13.97it/s] 60%|██████ | 300/500 [00:23<00:14, 13.65it/s] 60%|██████ | 302/500 [00:23<00:14, 13.98it/s] 61%|██████ | 304/500 [00:23<00:14, 13.75it/s] 61%|██████ | 306/500 [00:23<00:14, 13.56it/s] 62%|██████▏ | 308/500 [00:24<00:13, 13.84it/s] 62%|██████▏ | 310/500 [00:24<00:13, 14.39it/s] 62%|██████▏ | 312/500 [00:24<00:13, 14.41it/s] 63%|██████▎ | 314/500 [00:24<00:12, 14.39it/s] 63%|██████▎ | 316/500 [00:24<00:13, 13.89it/s] 64%|██████▎ | 318/500 [00:24<00:12, 14.00it/s] 64%|██████▍ | 320/500 [00:24<00:12, 13.87it/s] 64%|██████▍ | 322/500 [00:25<00:12, 14.59it/s] 65%|██████▍ | 324/500 [00:25<00:17, 10.29it/s] 65%|██████▌ | 326/500 [00:25<00:19, 9.06it/s] 66%|██████▌ | 328/500 [00:26<00:22, 7.81it/s] 66%|██████▌ | 329/500 [00:26<00:23, 7.30it/s] 66%|██████▌ | 330/500 [00:26<00:24, 7.01it/s] 66%|██████▋ | 332/500 [00:26<00:19, 8.61it/s] 67%|██████▋ | 334/500 [00:26<00:17, 9.70it/s] 67%|██████▋ | 336/500 [00:26<00:16, 10.10it/s] 68%|██████▊ | 338/500 [00:27<00:15, 10.24it/s] 68%|██████▊ | 340/500 [00:27<00:14, 11.42it/s] 68%|██████▊ | 342/500 [00:27<00:12, 12.55it/s] 69%|██████▉ | 344/500 [00:27<00:12, 12.64it/s] 69%|██████▉ | 346/500 [00:27<00:11, 13.12it/s] 70%|██████▉ | 348/500 [00:27<00:10, 13.88it/s] 70%|███████ | 350/500 [00:27<00:10, 14.24it/s] 70%|███████ | 352/500 [00:28<00:10, 13.81it/s] 71%|███████ | 354/500 [00:28<00:10, 13.99it/s] 71%|███████ | 356/500 [00:28<00:10, 14.27it/s] 72%|███████▏ | 358/500 [00:28<00:09, 14.49it/s] 72%|███████▏ | 360/500 [00:28<00:10, 13.93it/s] 72%|███████▏ | 362/500 [00:28<00:09, 14.18it/s] 73%|███████▎ | 364/500 [00:28<00:09, 14.90it/s] 73%|███████▎ | 366/500 [00:28<00:09, 13.71it/s] 74%|███████▎ | 368/500 [00:29<00:09, 13.71it/s] 74%|███████▍ | 370/500 [00:29<00:09, 13.79it/s] 74%|███████▍ | 372/500 [00:29<00:09, 13.57it/s] 75%|███████▍ | 374/500 [00:29<00:09, 13.23it/s] 75%|███████▌ | 376/500 [00:29<00:09, 12.58it/s] 76%|███████▌ | 378/500 [00:29<00:09, 12.96it/s] 76%|███████▌ | 380/500 [00:30<00:09, 12.80it/s] 76%|███████▋ | 382/500 [00:30<00:08, 13.57it/s] 77%|███████▋ | 384/500 [00:30<00:09, 12.64it/s] 77%|███████▋ | 386/500 [00:30<00:09, 12.53it/s] 78%|███████▊ | 388/500 [00:30<00:08, 13.25it/s] 78%|███████▊ | 390/500 [00:30<00:08, 13.44it/s] 78%|███████▊ | 392/500 [00:30<00:07, 14.42it/s] 79%|███████▉ | 394/500 [00:31<00:07, 13.45it/s] 79%|███████▉ | 396/500 [00:31<00:07, 13.59it/s] 80%|███████▉ | 398/500 [00:31<00:07, 13.87it/s] 80%|████████ | 400/500 [00:31<00:07, 13.93it/s] 80%|████████ | 402/500 [00:31<00:07, 13.81it/s] 81%|████████ | 404/500 [00:31<00:06, 14.15it/s] 81%|████████ | 406/500 [00:31<00:06, 14.40it/s] 82%|████████▏ | 408/500 [00:32<00:06, 14.77it/s] 82%|████████▏ | 410/500 [00:32<00:06, 13.89it/s] 82%|████████▏ | 412/500 [00:32<00:06, 13.48it/s] 83%|████████▎ | 414/500 [00:32<00:05, 14.44it/s] 83%|████████▎ | 416/500 [00:32<00:05, 14.54it/s] 84%|████████▎ | 418/500 [00:32<00:05, 14.70it/s] 84%|████████▍ | 420/500 [00:32<00:05, 14.68it/s] 84%|████████▍ | 422/500 [00:33<00:05, 14.49it/s] 85%|████████▍ | 424/500 [00:33<00:05, 13.62it/s] 85%|████████▌ | 426/500 [00:33<00:05, 13.58it/s] 86%|████████▌ | 428/500 [00:33<00:05, 13.15it/s] 86%|████████▌ | 430/500 [00:33<00:05, 13.00it/s] 86%|████████▋ | 432/500 [00:33<00:05, 13.46it/s] 87%|████████▋ | 434/500 [00:33<00:04, 13.93it/s] 87%|████████▋ | 436/500 [00:34<00:04, 13.72it/s] 88%|████████▊ | 438/500 [00:34<00:04, 13.04it/s] 88%|████████▊ | 440/500 [00:34<00:04, 13.30it/s] 88%|████████▊ | 442/500 [00:34<00:04, 13.54it/s] 89%|████████▉ | 444/500 [00:34<00:03, 14.42it/s] 89%|████████▉ | 446/500 [00:34<00:03, 14.73it/s] 90%|████████▉ | 448/500 [00:34<00:03, 14.61it/s] 90%|█████████ | 450/500 [00:35<00:03, 13.29it/s] 90%|█████████ | 452/500 [00:35<00:03, 13.38it/s] 91%|█████████ | 454/500 [00:35<00:03, 13.60it/s] 91%|█████████ | 456/500 [00:35<00:03, 13.75it/s] 92%|█████████▏| 458/500 [00:35<00:03, 13.60it/s] 92%|█████████▏| 460/500 [00:35<00:03, 13.25it/s] 92%|█████████▏| 462/500 [00:36<00:02, 13.81it/s] 93%|█████████▎| 464/500 [00:36<00:02, 13.11it/s] 93%|█████████▎| 466/500 [00:36<00:02, 13.15it/s] 94%|█████████▎| 468/500 [00:36<00:02, 13.01it/s] 94%|█████████▍| 470/500 [00:36<00:02, 13.17it/s] 94%|█████████▍| 472/500 [00:36<00:02, 13.38it/s] 95%|█████████▍| 474/500 [00:36<00:01, 13.18it/s] 95%|█████████▌| 476/500 [00:37<00:01, 13.09it/s] 96%|█████████▌| 478/500 [00:37<00:01, 12.81it/s] 96%|█████████▌| 480/500 [00:37<00:01, 12.35it/s] 96%|█████████▋| 482/500 [00:37<00:01, 12.69it/s] 97%|█████████▋| 484/500 [00:37<00:01, 12.80it/s] 97%|█████████▋| 486/500 [00:37<00:01, 13.44it/s] 98%|█████████▊| 488/500 [00:38<00:00, 13.52it/s] 98%|█████████▊| 490/500 [00:38<00:00, 12.61it/s] 98%|█████████▊| 492/500 [00:38<00:00, 13.08it/s] 99%|█████████▉| 494/500 [00:38<00:00, 13.28it/s] 99%|█████████▉| 496/500 [00:38<00:00, 13.80it/s] 100%|█████████▉| 498/500 [00:38<00:00, 14.22it/s] 100%|██████████| 500/500 [00:38<00:00, 12.86it/s] 60%|██████ | 6/10 [03:49<02:29, 37.40s/it] 0%| | 0/500 [00:00<?, ?it/s] 0%| | 2/500 [00:00<00:40, 12.17it/s] 1%| | 4/500 [00:00<00:38, 13.03it/s] 1%| | 6/500 [00:00<00:36, 13.56it/s] 2%|▏ | 8/500 [00:00<00:34, 14.31it/s] 2%|▏ | 10/500 [00:00<00:34, 14.31it/s] 2%|▏ | 12/500 [00:00<00:36, 13.28it/s] 3%|▎ | 14/500 [00:01<00:34, 14.24it/s] 3%|▎ | 16/500 [00:01<00:32, 14.72it/s] 4%|▎ | 18/500 [00:01<00:32, 14.89it/s] 4%|▍ | 20/500 [00:01<00:34, 13.88it/s] 4%|▍ | 22/500 [00:01<00:34, 13.96it/s] 5%|▍ | 24/500 [00:01<00:36, 12.97it/s] 5%|▌ | 26/500 [00:01<00:37, 12.67it/s] 6%|▌ | 28/500 [00:02<00:36, 12.99it/s] 6%|▌ | 30/500 [00:02<00:34, 13.78it/s] 6%|▋ | 32/500 [00:02<00:33, 13.88it/s] 7%|▋ | 34/500 [00:02<00:33, 13.82it/s] 7%|▋ | 36/500 [00:02<00:32, 14.10it/s] 8%|▊ | 38/500 [00:02<00:33, 13.73it/s] 8%|▊ | 40/500 [00:02<00:31, 14.46it/s] 8%|▊ | 42/500 [00:03<00:30, 15.18it/s] 9%|▉ | 44/500 [00:03<00:29, 15.46it/s] 9%|▉ | 46/500 [00:03<00:28, 15.75it/s] 10%|▉ | 48/500 [00:03<00:30, 14.99it/s] 10%|█ | 50/500 [00:03<00:29, 15.48it/s] 10%|█ | 52/500 [00:03<00:29, 15.20it/s] 11%|█ | 54/500 [00:03<00:31, 14.33it/s] 11%|█ | 56/500 [00:03<00:30, 14.60it/s] 12%|█▏ | 58/500 [00:04<00:29, 15.05it/s] 12%|█▏ | 60/500 [00:04<00:30, 14.44it/s] 12%|█▏ | 62/500 [00:04<00:29, 14.88it/s] 13%|█▎ | 64/500 [00:04<00:30, 14.49it/s] 13%|█▎ | 66/500 [00:04<00:33, 13.09it/s] 14%|█▎ | 68/500 [00:04<00:32, 13.42it/s] 14%|█▍ | 70/500 [00:04<00:30, 14.21it/s] 14%|█▍ | 72/500 [00:05<00:28, 14.84it/s] 15%|█▍ | 74/500 [00:05<00:28, 14.74it/s] 15%|█▌ | 76/500 [00:05<00:28, 14.64it/s] 16%|█▌ | 78/500 [00:05<00:28, 14.83it/s] 16%|█▌ | 80/500 [00:05<00:30, 13.63it/s] 16%|█▋ | 82/500 [00:05<00:29, 14.00it/s] 17%|█▋ | 84/500 [00:05<00:28, 14.61it/s] 17%|█▋ | 86/500 [00:06<00:28, 14.51it/s] 18%|█▊ | 88/500 [00:06<00:28, 14.56it/s] 18%|█▊ | 90/500 [00:06<00:28, 14.52it/s] 18%|█▊ | 92/500 [00:06<00:26, 15.27it/s] 19%|█▉ | 94/500 [00:06<00:28, 14.47it/s] 19%|█▉ | 96/500 [00:06<00:27, 14.93it/s] 20%|█▉ | 98/500 [00:06<00:26, 15.14it/s] 20%|██ | 100/500 [00:06<00:26, 15.33it/s] 20%|██ | 102/500 [00:07<00:25, 15.65it/s] 21%|██ | 104/500 [00:07<00:26, 15.08it/s] 21%|██ | 106/500 [00:07<00:25, 15.21it/s] 22%|██▏ | 108/500 [00:07<00:25, 15.61it/s] 22%|██▏ | 110/500 [00:07<00:26, 14.47it/s] 22%|██▏ | 112/500 [00:07<00:26, 14.81it/s] 23%|██▎ | 114/500 [00:07<00:24, 15.46it/s] 23%|██▎ | 116/500 [00:08<00:25, 14.81it/s] 24%|██▎ | 118/500 [00:08<00:25, 15.05it/s] 24%|██▍ | 120/500 [00:08<00:24, 15.49it/s] 24%|██▍ | 122/500 [00:08<00:24, 15.28it/s] 25%|██▍ | 124/500 [00:08<00:27, 13.84it/s] 25%|██▌ | 126/500 [00:08<00:26, 14.24it/s] 26%|██▌ | 128/500 [00:08<00:25, 14.71it/s] 26%|██▌ | 130/500 [00:08<00:25, 14.72it/s] 26%|██▋ | 132/500 [00:09<00:23, 15.41it/s] 27%|██▋ | 134/500 [00:09<00:24, 15.06it/s] 27%|██▋ | 136/500 [00:09<00:25, 14.43it/s] 28%|██▊ | 138/500 [00:09<00:24, 14.66it/s] 28%|██▊ | 140/500 [00:09<00:24, 14.92it/s] 28%|██▊ | 142/500 [00:09<00:24, 14.33it/s] 29%|██▉ | 144/500 [00:09<00:25, 13.87it/s] 29%|██▉ | 146/500 [00:10<00:24, 14.54it/s] 30%|██▉ | 148/500 [00:10<00:25, 14.07it/s] 30%|███ | 150/500 [00:10<00:24, 14.53it/s] 30%|███ | 152/500 [00:10<00:22, 15.15it/s] 31%|███ | 154/500 [00:10<00:22, 15.50it/s] 31%|███ | 156/500 [00:10<00:23, 14.94it/s] 32%|███▏ | 158/500 [00:10<00:23, 14.59it/s] 32%|███▏ | 160/500 [00:11<00:22, 14.80it/s] 32%|███▏ | 162/500 [00:11<00:22, 15.04it/s] 33%|███▎ | 164/500 [00:11<00:22, 15.02it/s] 33%|███▎ | 166/500 [00:11<00:21, 15.34it/s] 34%|███▎ | 168/500 [00:11<00:22, 14.96it/s] 34%|███▍ | 170/500 [00:11<00:22, 14.36it/s] 34%|███▍ | 172/500 [00:11<00:22, 14.48it/s] 35%|███▍ | 174/500 [00:11<00:22, 14.62it/s] 35%|███▌ | 176/500 [00:12<00:21, 15.18it/s] 36%|███▌ | 178/500 [00:12<00:21, 14.74it/s] 36%|███▌ | 180/500 [00:12<00:21, 14.59it/s] 36%|███▋ | 182/500 [00:12<00:21, 15.04it/s] 37%|███▋ | 184/500 [00:12<00:20, 15.07it/s] 37%|███▋ | 186/500 [00:12<00:20, 15.33it/s] 38%|███▊ | 188/500 [00:12<00:19, 15.71it/s] 38%|███▊ | 190/500 [00:13<00:21, 14.71it/s] 38%|███▊ | 192/500 [00:13<00:21, 14.65it/s] 39%|███▉ | 194/500 [00:13<00:20, 15.19it/s] 39%|███▉ | 196/500 [00:13<00:21, 14.36it/s] 40%|███▉ | 198/500 [00:13<00:21, 14.07it/s] 40%|████ | 200/500 [00:13<00:21, 14.26it/s] 40%|████ | 202/500 [00:13<00:20, 14.42it/s] 41%|████ | 204/500 [00:14<00:20, 14.37it/s] 41%|████ | 206/500 [00:14<00:19, 15.08it/s] 42%|████▏ | 208/500 [00:14<00:19, 15.17it/s] 42%|████▏ | 210/500 [00:14<00:18, 15.66it/s] 42%|████▏ | 212/500 [00:14<00:19, 14.87it/s] 43%|████▎ | 214/500 [00:14<00:18, 15.45it/s] 43%|████▎ | 216/500 [00:14<00:18, 15.32it/s] 44%|████▎ | 218/500 [00:14<00:18, 14.87it/s] 44%|████▍ | 220/500 [00:15<00:18, 15.09it/s] 44%|████▍ | 222/500 [00:15<00:18, 15.10it/s] 45%|████▍ | 224/500 [00:15<00:18, 14.59it/s] 45%|████▌ | 226/500 [00:15<00:17, 15.27it/s] 46%|████▌ | 228/500 [00:15<00:17, 15.68it/s] 46%|████▌ | 230/500 [00:15<00:18, 14.93it/s] 46%|████▋ | 232/500 [00:15<00:17, 15.32it/s] 47%|████▋ | 234/500 [00:15<00:17, 14.89it/s] 47%|████▋ | 236/500 [00:16<00:17, 14.84it/s] 48%|████▊ | 238/500 [00:16<00:18, 14.55it/s] 48%|████▊ | 240/500 [00:16<00:17, 14.47it/s] 48%|████▊ | 242/500 [00:16<00:17, 14.83it/s] 49%|████▉ | 244/500 [00:16<00:16, 15.45it/s] 49%|████▉ | 246/500 [00:16<00:16, 15.64it/s] 50%|████▉ | 248/500 [00:16<00:15, 16.27it/s] 50%|█████ | 250/500 [00:17<00:15, 15.73it/s] 50%|█████ | 252/500 [00:17<00:16, 14.70it/s] 51%|█████ | 254/500 [00:17<00:16, 14.81it/s] 51%|█████ | 256/500 [00:17<00:16, 15.06it/s] 52%|█████▏ | 258/500 [00:17<00:15, 15.29it/s] 52%|█████▏ | 260/500 [00:17<00:15, 15.54it/s] 52%|█████▏ | 262/500 [00:17<00:15, 15.19it/s] 53%|█████▎ | 264/500 [00:17<00:15, 15.45it/s] 53%|█████▎ | 266/500 [00:18<00:15, 15.15it/s] 54%|█████▎ | 268/500 [00:18<00:15, 14.99it/s] 54%|█████▍ | 270/500 [00:18<00:14, 15.49it/s] 54%|█████▍ | 272/500 [00:18<00:15, 14.90it/s] 55%|█████▍ | 274/500 [00:18<00:14, 15.31it/s] 55%|█████▌ | 276/500 [00:18<00:14, 15.83it/s] 56%|█████▌ | 278/500 [00:18<00:14, 15.75it/s] 56%|█████▌ | 280/500 [00:18<00:14, 15.49it/s] 56%|█████▋ | 282/500 [00:19<00:14, 14.91it/s] 57%|█████▋ | 284/500 [00:19<00:15, 14.38it/s] 57%|█████▋ | 286/500 [00:19<00:15, 14.12it/s] 58%|█████▊ | 288/500 [00:19<00:14, 14.32it/s] 58%|█████▊ | 290/500 [00:19<00:14, 14.29it/s] 58%|█████▊ | 292/500 [00:19<00:14, 14.17it/s] 59%|█████▉ | 294/500 [00:19<00:13, 14.81it/s] 59%|█████▉ | 296/500 [00:20<00:14, 14.32it/s] 60%|█████▉ | 298/500 [00:20<00:14, 13.59it/s] 60%|██████ | 300/500 [00:20<00:14, 13.79it/s] 60%|██████ | 302/500 [00:20<00:13, 14.17it/s] 61%|██████ | 304/500 [00:20<00:13, 14.33it/s] 61%|██████ | 306/500 [00:20<00:13, 14.41it/s] 62%|██████▏ | 308/500 [00:20<00:12, 14.89it/s] 62%|██████▏ | 310/500 [00:21<00:13, 14.48it/s] 62%|██████▏ | 312/500 [00:21<00:13, 14.11it/s] 63%|██████▎ | 314/500 [00:21<00:13, 14.24it/s] 63%|██████▎ | 316/500 [00:21<00:12, 14.45it/s] 64%|██████▎ | 318/500 [00:21<00:11, 15.43it/s] 64%|██████▍ | 320/500 [00:21<00:11, 15.73it/s] 64%|██████▍ | 322/500 [00:21<00:11, 15.89it/s] 65%|██████▍ | 324/500 [00:22<00:11, 14.69it/s] 65%|██████▌ | 326/500 [00:22<00:12, 13.82it/s] 66%|██████▌ | 328/500 [00:22<00:12, 14.33it/s] 66%|██████▌ | 330/500 [00:22<00:11, 14.94it/s] 66%|██████▋ | 332/500 [00:22<00:11, 14.95it/s] 67%|██████▋ | 334/500 [00:22<00:10, 15.16it/s] 67%|██████▋ | 336/500 [00:22<00:10, 15.36it/s] 68%|██████▊ | 338/500 [00:22<00:10, 15.46it/s] 68%|██████▊ | 340/500 [00:23<00:10, 14.80it/s] 68%|██████▊ | 342/500 [00:23<00:12, 12.58it/s] 69%|██████▉ | 344/500 [00:23<00:12, 12.68it/s] 69%|██████▉ | 346/500 [00:23<00:11, 13.91it/s] 70%|██████▉ | 348/500 [00:23<00:11, 13.72it/s] 70%|███████ | 350/500 [00:23<00:10, 14.13it/s] 70%|███████ | 352/500 [00:23<00:09, 14.82it/s] 71%|███████ | 354/500 [00:24<00:09, 14.99it/s] 71%|███████ | 356/500 [00:24<00:09, 14.47it/s] 72%|███████▏ | 358/500 [00:24<00:09, 14.63it/s] 72%|███████▏ | 360/500 [00:24<00:09, 15.29it/s] 72%|███████▏ | 362/500 [00:24<00:09, 14.41it/s] 73%|███████▎ | 364/500 [00:24<00:09, 14.21it/s] 73%|███████▎ | 366/500 [00:24<00:08, 14.92it/s] 74%|███████▎ | 368/500 [00:25<00:08, 15.17it/s] 74%|███████▍ | 370/500 [00:25<00:08, 15.53it/s] 74%|███████▍ | 372/500 [00:25<00:08, 15.46it/s] 75%|███████▍ | 374/500 [00:25<00:08, 14.90it/s] 75%|███████▌ | 376/500 [00:25<00:08, 14.82it/s] 76%|███████▌ | 378/500 [00:25<00:08, 14.97it/s] 76%|███████▌ | 380/500 [00:25<00:08, 14.73it/s] 76%|███████▋ | 382/500 [00:26<00:07, 14.97it/s] 77%|███████▋ | 384/500 [00:26<00:07, 15.54it/s] 77%|███████▋ | 386/500 [00:26<00:07, 15.75it/s] 78%|███████▊ | 388/500 [00:26<00:07, 15.27it/s] 78%|███████▊ | 390/500 [00:26<00:07, 14.72it/s] 78%|███████▊ | 392/500 [00:26<00:06, 15.60it/s] 79%|███████▉ | 394/500 [00:26<00:06, 15.44it/s] 79%|███████▉ | 396/500 [00:26<00:06, 15.25it/s] 80%|███████▉ | 398/500 [00:27<00:06, 16.02it/s] 80%|████████ | 400/500 [00:27<00:06, 15.64it/s] 80%|████████ | 402/500 [00:27<00:06, 15.95it/s] 81%|████████ | 404/500 [00:27<00:06, 14.88it/s] 81%|████████ | 406/500 [00:27<00:06, 14.07it/s] 82%|████████▏ | 408/500 [00:27<00:06, 14.51it/s] 82%|████████▏ | 410/500 [00:27<00:06, 14.19it/s] 82%|████████▏ | 412/500 [00:28<00:06, 14.00it/s] 83%|████████▎ | 414/500 [00:28<00:05, 14.58it/s] 83%|████████▎ | 416/500 [00:28<00:06, 13.85it/s] 84%|████████▎ | 418/500 [00:28<00:05, 14.07it/s] 84%|████████▍ | 420/500 [00:28<00:05, 14.47it/s] 84%|████████▍ | 422/500 [00:28<00:05, 14.69it/s] 85%|████████▍ | 424/500 [00:28<00:05, 14.84it/s] 85%|████████▌ | 426/500 [00:28<00:04, 15.56it/s] 86%|████████▌ | 428/500 [00:29<00:04, 15.58it/s] 86%|████████▌ | 430/500 [00:29<00:04, 14.51it/s] 86%|████████▋ | 432/500 [00:29<00:04, 14.21it/s] 87%|████████▋ | 434/500 [00:29<00:04, 14.55it/s] 87%|████████▋ | 436/500 [00:29<00:04, 14.60it/s] 88%|████████▊ | 438/500 [00:29<00:04, 14.39it/s] 88%|████████▊ | 440/500 [00:29<00:03, 15.02it/s] 88%|████████▊ | 442/500 [00:30<00:03, 15.01it/s] 89%|████████▉ | 444/500 [00:30<00:03, 14.65it/s] 89%|████████▉ | 446/500 [00:30<00:03, 15.49it/s] 90%|████████▉ | 448/500 [00:30<00:03, 15.19it/s] 90%|█████████ | 450/500 [00:30<00:03, 14.53it/s] 90%|█████████ | 452/500 [00:30<00:03, 14.09it/s] 91%|█████████ | 454/500 [00:30<00:03, 14.29it/s] 91%|█████████ | 456/500 [00:31<00:03, 13.83it/s] 92%|█████████▏| 458/500 [00:31<00:03, 13.96it/s] 92%|█████████▏| 460/500 [00:31<00:02, 13.89it/s] 92%|█████████▏| 462/500 [00:31<00:02, 14.16it/s] 93%|█████████▎| 464/500 [00:31<00:02, 14.13it/s] 93%|█████████▎| 466/500 [00:31<00:02, 14.65it/s] 94%|█████████▎| 468/500 [00:31<00:02, 14.96it/s] 94%|█████████▍| 470/500 [00:32<00:02, 14.08it/s] 94%|█████████▍| 472/500 [00:32<00:01, 14.12it/s] 95%|█████████▍| 474/500 [00:32<00:01, 13.96it/s] 95%|█████████▌| 476/500 [00:32<00:01, 14.77it/s] 96%|█████████▌| 478/500 [00:32<00:01, 15.19it/s] 96%|█████████▌| 480/500 [00:32<00:01, 14.89it/s] 96%|█████████▋| 482/500 [00:32<00:01, 14.77it/s] 97%|█████████▋| 484/500 [00:32<00:01, 14.51it/s] 97%|█████████▋| 486/500 [00:33<00:00, 14.72it/s] 98%|█████████▊| 488/500 [00:33<00:00, 14.46it/s] 98%|█████████▊| 490/500 [00:33<00:00, 14.96it/s] 98%|█████████▊| 492/500 [00:33<00:00, 15.11it/s] 99%|█████████▉| 494/500 [00:33<00:00, 14.85it/s] 99%|█████████▉| 496/500 [00:33<00:00, 15.11it/s] 100%|█████████▉| 498/500 [00:33<00:00, 15.06it/s] 100%|██████████| 500/500 [00:34<00:00, 14.69it/s] 70%|███████ | 7/10 [04:24<01:48, 36.30s/it] 0%| | 0/500 [00:00<?, ?it/s] 0%| | 2/500 [00:00<00:35, 14.02it/s] 1%| | 4/500 [00:00<00:34, 14.39it/s] 1%| | 6/500 [00:00<00:33, 14.94it/s] 2%|▏ | 8/500 [00:00<00:34, 14.27it/s] 2%|▏ | 10/500 [00:00<00:35, 13.68it/s] 2%|▏ | 12/500 [00:00<00:35, 13.78it/s] 3%|▎ | 14/500 [00:00<00:34, 14.23it/s] 3%|▎ | 16/500 [00:01<00:34, 14.05it/s] 4%|▎ | 18/500 [00:01<00:32, 14.85it/s] 4%|▍ | 20/500 [00:01<00:32, 14.66it/s] 4%|▍ | 22/500 [00:01<00:34, 13.77it/s] 5%|▍ | 24/500 [00:01<00:36, 13.19it/s] 5%|▌ | 26/500 [00:01<00:35, 13.53it/s] 6%|▌ | 28/500 [00:01<00:33, 14.04it/s] 6%|▌ | 30/500 [00:02<00:34, 13.75it/s] 6%|▋ | 32/500 [00:02<00:33, 14.01it/s] 7%|▋ | 34/500 [00:02<00:32, 14.44it/s] 7%|▋ | 36/500 [00:02<00:31, 14.58it/s] 8%|▊ | 38/500 [00:02<00:32, 14.32it/s] 8%|▊ | 40/500 [00:02<00:31, 14.55it/s] 8%|▊ | 42/500 [00:02<00:30, 14.90it/s] 9%|▉ | 44/500 [00:03<00:29, 15.44it/s] 9%|▉ | 46/500 [00:03<00:28, 15.68it/s] 10%|▉ | 48/500 [00:03<00:30, 14.65it/s] 10%|█ | 50/500 [00:03<00:31, 14.31it/s] 10%|█ | 52/500 [00:03<00:29, 15.05it/s] 11%|█ | 54/500 [00:03<00:32, 13.78it/s] 11%|█ | 56/500 [00:03<00:31, 13.90it/s] 12%|█▏ | 58/500 [00:04<00:33, 13.37it/s] 12%|█▏ | 60/500 [00:04<00:31, 13.98it/s] 12%|█▏ | 62/500 [00:04<00:31, 13.85it/s] 13%|█▎ | 64/500 [00:04<00:31, 13.74it/s] 13%|█▎ | 66/500 [00:04<00:31, 13.77it/s] 14%|█▎ | 68/500 [00:04<00:31, 13.83it/s] 14%|█▍ | 70/500 [00:04<00:30, 13.91it/s] 14%|█▍ | 72/500 [00:05<00:28, 14.80it/s] 15%|█▍ | 74/500 [00:05<00:29, 14.40it/s] 15%|█▌ | 76/500 [00:05<00:29, 14.33it/s] 16%|█▌ | 78/500 [00:05<00:29, 14.53it/s] 16%|█▌ | 80/500 [00:05<00:28, 14.56it/s] 16%|█▋ | 82/500 [00:05<00:29, 14.33it/s] 17%|█▋ | 84/500 [00:05<00:28, 14.58it/s] 17%|█▋ | 86/500 [00:06<00:27, 14.81it/s] 18%|█▊ | 88/500 [00:06<00:27, 14.81it/s] 18%|█▊ | 90/500 [00:06<00:26, 15.34it/s] 18%|█▊ | 92/500 [00:06<00:26, 15.29it/s] 19%|█▉ | 94/500 [00:06<00:28, 14.45it/s] 19%|█▉ | 96/500 [00:06<00:28, 14.36it/s] 20%|█▉ | 98/500 [00:06<00:28, 14.32it/s] 20%|██ | 100/500 [00:06<00:27, 14.74it/s] 20%|██ | 102/500 [00:07<00:27, 14.54it/s] 21%|██ | 104/500 [00:07<00:27, 14.65it/s] 21%|██ | 106/500 [00:07<00:28, 13.95it/s] 22%|██▏ | 108/500 [00:07<00:26, 14.53it/s] 22%|██▏ | 110/500 [00:07<00:26, 14.57it/s] 22%|██▏ | 112/500 [00:07<00:29, 13.38it/s] 23%|██▎ | 114/500 [00:07<00:28, 13.44it/s] 23%|██▎ | 116/500 [00:08<00:27, 13.78it/s] 24%|██▎ | 118/500 [00:08<00:28, 13.38it/s] 24%|██▍ | 120/500 [00:08<00:27, 13.61it/s] 24%|██▍ | 122/500 [00:08<00:26, 14.11it/s] 25%|██▍ | 124/500 [00:08<00:25, 14.68it/s] 25%|██▌ | 126/500 [00:08<00:26, 14.11it/s] 26%|██▌ | 128/500 [00:08<00:26, 13.91it/s] 26%|██▌ | 130/500 [00:09<00:26, 14.13it/s] 26%|██▋ | 132/500 [00:09<00:25, 14.19it/s] 27%|██▋ | 134/500 [00:09<00:25, 14.13it/s] 27%|██▋ | 136/500 [00:09<00:24, 14.63it/s] 28%|██▊ | 138/500 [00:09<00:24, 14.85it/s] 28%|██▊ | 140/500 [00:09<00:24, 14.74it/s] 28%|██▊ | 142/500 [00:09<00:26, 13.67it/s] 29%|██▉ | 144/500 [00:10<00:25, 13.84it/s] 29%|██▉ | 146/500 [00:10<00:25, 13.99it/s] 30%|██▉ | 148/500 [00:10<00:25, 13.72it/s] 30%|███ | 150/500 [00:10<00:24, 14.18it/s] 30%|███ | 152/500 [00:10<00:22, 15.17it/s] 31%|███ | 154/500 [00:10<00:22, 15.18it/s] 31%|███ | 156/500 [00:10<00:23, 14.71it/s] 32%|███▏ | 158/500 [00:11<00:22, 14.91it/s] 32%|███▏ | 160/500 [00:11<00:22, 14.98it/s] 32%|███▏ | 162/500 [00:11<00:22, 14.80it/s] 33%|███▎ | 164/500 [00:11<00:23, 14.51it/s] 33%|███▎ | 166/500 [00:11<00:22, 14.57it/s] 34%|███▎ | 168/500 [00:11<00:24, 13.59it/s] 34%|███▍ | 170/500 [00:11<00:23, 13.87it/s] 34%|███▍ | 172/500 [00:12<00:24, 13.60it/s] 35%|███▍ | 174/500 [00:12<00:24, 13.35it/s] 35%|███▌ | 176/500 [00:12<00:22, 14.15it/s] 36%|███▌ | 178/500 [00:12<00:23, 14.00it/s] 36%|███▌ | 180/500 [00:12<00:21, 14.58it/s] 36%|███▋ | 182/500 [00:12<00:22, 14.15it/s] 37%|███▋ | 184/500 [00:12<00:21, 14.71it/s] 37%|███▋ | 186/500 [00:13<00:21, 14.42it/s] 38%|███▊ | 188/500 [00:13<00:21, 14.60it/s] 38%|███▊ | 190/500 [00:13<00:21, 14.31it/s] 38%|███▊ | 192/500 [00:13<00:21, 14.21it/s] 39%|███▉ | 194/500 [00:13<00:22, 13.89it/s] 39%|███▉ | 196/500 [00:13<00:20, 14.51it/s] 40%|███▉ | 198/500 [00:13<00:21, 14.09it/s] 40%|████ | 200/500 [00:14<00:20, 14.59it/s] 40%|████ | 202/500 [00:14<00:21, 13.92it/s] 41%|████ | 204/500 [00:14<00:23, 12.65it/s] 41%|████ | 206/500 [00:14<00:26, 11.29it/s] 42%|████▏ | 208/500 [00:14<00:28, 10.41it/s] 42%|████▏ | 210/500 [00:15<00:28, 10.13it/s] 42%|████▏ | 212/500 [00:15<00:30, 9.42it/s] 43%|████▎ | 213/500 [00:15<00:31, 9.05it/s] 43%|████▎ | 214/500 [00:15<00:33, 8.56it/s] 43%|████▎ | 216/500 [00:15<00:29, 9.72it/s] 43%|████▎ | 217/500 [00:15<00:30, 9.24it/s] 44%|████▎ | 218/500 [00:15<00:30, 9.17it/s] 44%|████▍ | 219/500 [00:16<00:31, 9.04it/s] 44%|████▍ | 220/500 [00:16<00:30, 9.12it/s] 44%|████▍ | 221/500 [00:16<00:30, 9.00it/s] 45%|████▍ | 223/500 [00:16<00:25, 10.88it/s] 45%|████▌ | 225/500 [00:16<00:22, 12.12it/s] 45%|████▌ | 227/500 [00:16<00:21, 12.86it/s] 46%|████▌ | 229/500 [00:16<00:19, 13.69it/s] 46%|████▌ | 231/500 [00:16<00:19, 13.70it/s] 47%|████▋ | 233/500 [00:17<00:19, 13.60it/s] 47%|████▋ | 235/500 [00:17<00:19, 13.54it/s] 47%|████▋ | 237/500 [00:17<00:18, 14.16it/s] 48%|████▊ | 239/500 [00:17<00:18, 14.39it/s] 48%|████▊ | 241/500 [00:17<00:17, 14.81it/s] 49%|████▊ | 243/500 [00:17<00:17, 15.02it/s] 49%|████▉ | 245/500 [00:17<00:17, 14.97it/s] 49%|████▉ | 247/500 [00:18<00:16, 15.22it/s] 50%|████▉ | 249/500 [00:18<00:16, 15.35it/s] 50%|█████ | 251/500 [00:18<00:17, 14.23it/s] 51%|█████ | 253/500 [00:18<00:17, 14.24it/s] 51%|█████ | 255/500 [00:18<00:17, 13.84it/s] 51%|█████▏ | 257/500 [00:18<00:17, 13.78it/s] 52%|█████▏ | 259/500 [00:18<00:17, 13.87it/s] 52%|█████▏ | 261/500 [00:19<00:16, 14.12it/s] 53%|█████▎ | 263/500 [00:19<00:16, 14.03it/s] 53%|█████▎ | 265/500 [00:19<00:17, 13.51it/s] 53%|█████▎ | 267/500 [00:19<00:17, 13.40it/s] 54%|█████▍ | 269/500 [00:19<00:17, 13.46it/s] 54%|█████▍ | 271/500 [00:19<00:17, 12.93it/s] 55%|█████▍ | 273/500 [00:19<00:17, 13.31it/s] 55%|█████▌ | 275/500 [00:20<00:16, 13.74it/s] 55%|█████▌ | 277/500 [00:20<00:15, 14.10it/s] 56%|█████▌ | 279/500 [00:20<00:16, 13.42it/s] 56%|█████▌ | 281/500 [00:20<00:15, 14.00it/s] 57%|█████▋ | 283/500 [00:20<00:16, 13.52it/s] 57%|█████▋ | 285/500 [00:20<00:15, 14.08it/s] 57%|█████▋ | 287/500 [00:20<00:14, 14.68it/s] 58%|█████▊ | 289/500 [00:21<00:14, 14.54it/s] 58%|█████▊ | 291/500 [00:21<00:14, 14.05it/s] 59%|█████▊ | 293/500 [00:21<00:14, 14.55it/s] 59%|█████▉ | 295/500 [00:21<00:13, 14.77it/s] 59%|█████▉ | 297/500 [00:21<00:13, 14.51it/s] 60%|█████▉ | 299/500 [00:21<00:14, 14.35it/s] 60%|██████ | 301/500 [00:21<00:14, 13.96it/s] 61%|██████ | 303/500 [00:22<00:13, 14.63it/s] 61%|██████ | 305/500 [00:22<00:13, 14.22it/s] 61%|██████▏ | 307/500 [00:22<00:13, 14.43it/s] 62%|██████▏ | 309/500 [00:22<00:13, 14.19it/s] 62%|██████▏ | 311/500 [00:22<00:13, 14.52it/s] 63%|██████▎ | 313/500 [00:22<00:13, 14.30it/s] 63%|██████▎ | 315/500 [00:22<00:12, 14.37it/s] 63%|██████▎ | 317/500 [00:23<00:12, 14.36it/s] 64%|██████▍ | 319/500 [00:23<00:13, 13.91it/s] 64%|██████▍ | 321/500 [00:23<00:12, 14.05it/s] 65%|██████▍ | 323/500 [00:23<00:12, 13.63it/s] 65%|██████▌ | 325/500 [00:23<00:12, 13.58it/s] 65%|██████▌ | 327/500 [00:23<00:12, 14.00it/s] 66%|██████▌ | 329/500 [00:23<00:12, 13.71it/s] 66%|██████▌ | 331/500 [00:24<00:12, 13.56it/s] 67%|██████▋ | 333/500 [00:24<00:12, 13.32it/s] 67%|██████▋ | 335/500 [00:24<00:12, 13.67it/s] 67%|██████▋ | 337/500 [00:24<00:11, 14.00it/s] 68%|██████▊ | 339/500 [00:24<00:11, 14.26it/s] 68%|██████▊ | 341/500 [00:24<00:10, 14.62it/s] 69%|██████▊ | 343/500 [00:24<00:10, 14.58it/s] 69%|██████▉ | 345/500 [00:24<00:10, 15.31it/s] 69%|██████▉ | 347/500 [00:25<00:10, 14.27it/s] 70%|██████▉ | 349/500 [00:25<00:10, 14.33it/s] 70%|███████ | 351/500 [00:25<00:09, 15.01it/s] 71%|███████ | 353/500 [00:25<00:10, 13.67it/s] 71%|███████ | 355/500 [00:25<00:11, 13.13it/s] 71%|███████▏ | 357/500 [00:25<00:10, 13.44it/s] 72%|███████▏ | 359/500 [00:26<00:10, 14.07it/s] 72%|███████▏ | 361/500 [00:26<00:09, 14.04it/s] 73%|███████▎ | 363/500 [00:26<00:09, 14.42it/s] 73%|███████▎ | 365/500 [00:26<00:09, 14.31it/s] 73%|███████▎ | 367/500 [00:26<00:09, 13.33it/s] 74%|███████▍ | 369/500 [00:26<00:09, 13.75it/s] 74%|███████▍ | 371/500 [00:26<00:09, 14.20it/s] 75%|███████▍ | 373/500 [00:27<00:08, 14.28it/s] 75%|███████▌ | 375/500 [00:27<00:09, 13.85it/s] 75%|███████▌ | 377/500 [00:27<00:08, 14.04it/s] 76%|███████▌ | 379/500 [00:27<00:08, 14.20it/s] 76%|███████▌ | 381/500 [00:27<00:08, 13.66it/s] 77%|███████▋ | 383/500 [00:27<00:08, 14.34it/s] 77%|███████▋ | 385/500 [00:27<00:07, 14.73it/s] 77%|███████▋ | 387/500 [00:28<00:07, 14.70it/s] 78%|███████▊ | 389/500 [00:28<00:07, 14.39it/s] 78%|███████▊ | 391/500 [00:28<00:07, 14.86it/s] 79%|███████▊ | 393/500 [00:28<00:07, 14.98it/s] 79%|███████▉ | 395/500 [00:28<00:07, 14.72it/s] 79%|███████▉ | 397/500 [00:28<00:07, 14.54it/s] 80%|███████▉ | 399/500 [00:28<00:06, 14.49it/s] 80%|████████ | 401/500 [00:28<00:07, 14.02it/s] 81%|████████ | 403/500 [00:29<00:06, 14.87it/s] 81%|████████ | 405/500 [00:29<00:06, 15.47it/s] 81%|████████▏ | 407/500 [00:29<00:06, 14.85it/s] 82%|████████▏ | 409/500 [00:29<00:06, 14.58it/s] 82%|████████▏ | 411/500 [00:29<00:06, 13.83it/s] 83%|████████▎ | 413/500 [00:29<00:06, 14.04it/s] 83%|████████▎ | 415/500 [00:29<00:05, 14.33it/s] 83%|████████▎ | 417/500 [00:30<00:05, 14.89it/s] 84%|████████▍ | 419/500 [00:30<00:05, 15.30it/s] 84%|████████▍ | 421/500 [00:30<00:05, 15.39it/s] 85%|████████▍ | 423/500 [00:30<00:05, 15.01it/s] 85%|████████▌ | 425/500 [00:30<00:05, 14.79it/s] 85%|████████▌ | 427/500 [00:30<00:05, 14.34it/s] 86%|████████▌ | 429/500 [00:30<00:04, 15.03it/s] 86%|████████▌ | 431/500 [00:30<00:04, 15.09it/s] 87%|████████▋ | 433/500 [00:31<00:04, 15.15it/s] 87%|████████▋ | 435/500 [00:31<00:04, 15.93it/s] 87%|████████▋ | 437/500 [00:31<00:04, 14.88it/s] 88%|████████▊ | 439/500 [00:31<00:04, 14.44it/s] 88%|████████▊ | 441/500 [00:31<00:04, 14.23it/s] 89%|████████▊ | 443/500 [00:31<00:04, 13.55it/s] 89%|████████▉ | 445/500 [00:31<00:04, 13.68it/s] 89%|████████▉ | 447/500 [00:32<00:03, 13.60it/s] 90%|████████▉ | 449/500 [00:32<00:03, 14.38it/s] 90%|█████████ | 451/500 [00:32<00:03, 14.74it/s] 91%|█████████ | 453/500 [00:32<00:03, 15.46it/s] 91%|█████████ | 455/500 [00:32<00:03, 14.96it/s] 91%|█████████▏| 457/500 [00:32<00:02, 14.72it/s] 92%|█████████▏| 459/500 [00:32<00:02, 14.67it/s] 92%|█████████▏| 461/500 [00:33<00:02, 14.50it/s] 93%|█████████▎| 463/500 [00:33<00:02, 14.44it/s] 93%|█████████▎| 465/500 [00:33<00:02, 14.45it/s] 93%|█████████▎| 467/500 [00:33<00:02, 13.80it/s] 94%|█████████▍| 469/500 [00:33<00:02, 14.22it/s] 94%|█████████▍| 471/500 [00:33<00:01, 14.67it/s] 95%|█████████▍| 473/500 [00:33<00:01, 14.64it/s] 95%|█████████▌| 475/500 [00:34<00:01, 14.86it/s] 95%|█████████▌| 477/500 [00:34<00:01, 14.70it/s] 96%|█████████▌| 479/500 [00:34<00:01, 14.34it/s] 96%|█████████▌| 481/500 [00:34<00:01, 14.02it/s] 97%|█████████▋| 483/500 [00:34<00:01, 14.57it/s] 97%|█████████▋| 485/500 [00:34<00:01, 14.49it/s] 97%|█████████▋| 487/500 [00:34<00:00, 14.03it/s] 98%|█████████▊| 489/500 [00:35<00:00, 14.11it/s] 98%|█████████▊| 491/500 [00:35<00:00, 14.10it/s] 99%|█████████▊| 493/500 [00:35<00:00, 13.75it/s] 99%|█████████▉| 495/500 [00:35<00:00, 13.57it/s] 99%|█████████▉| 497/500 [00:35<00:00, 13.82it/s] 100%|██████████| 500/500 [00:35<00:00, 13.96it/s] 80%|████████ | 8/10 [04:59<01:12, 36.15s/it] 0%| | 0/500 [00:00<?, ?it/s] 0%| | 1/500 [00:00<00:52, 9.56it/s] 1%| | 3/500 [00:00<00:41, 11.95it/s] 1%| | 5/500 [00:00<00:41, 12.02it/s] 1%|▏ | 7/500 [00:00<00:41, 11.92it/s] 2%|▏ | 9/500 [00:00<00:39, 12.36it/s] 2%|▏ | 11/500 [00:00<00:38, 12.75it/s] 3%|▎ | 13/500 [00:01<00:38, 12.54it/s] 3%|▎ | 15/500 [00:01<00:38, 12.61it/s] 3%|▎ | 17/500 [00:01<00:38, 12.43it/s] 4%|▍ | 19/500 [00:01<00:36, 13.24it/s] 4%|▍ | 21/500 [00:01<00:37, 12.77it/s] 5%|▍ | 23/500 [00:01<00:38, 12.41it/s] 5%|▌ | 25/500 [00:02<00:37, 12.55it/s] 5%|▌ | 27/500 [00:02<00:38, 12.31it/s] 6%|▌ | 29/500 [00:02<00:38, 12.30it/s] 6%|▌ | 31/500 [00:02<00:35, 13.22it/s] 7%|▋ | 33/500 [00:02<00:37, 12.32it/s] 7%|▋ | 35/500 [00:02<00:44, 10.50it/s] 7%|▋ | 37/500 [00:03<00:49, 9.35it/s] 8%|▊ | 39/500 [00:03<00:50, 9.07it/s] 8%|▊ | 40/500 [00:03<00:50, 9.10it/s] 8%|▊ | 41/500 [00:03<00:49, 9.25it/s] 8%|▊ | 42/500 [00:03<00:49, 9.31it/s] 9%|▊ | 43/500 [00:03<00:50, 9.05it/s] 9%|▉ | 44/500 [00:03<00:51, 8.88it/s] 9%|▉ | 46/500 [00:04<00:43, 10.40it/s] 10%|▉ | 48/500 [00:04<00:40, 11.08it/s] 10%|█ | 50/500 [00:04<00:40, 11.16it/s] 10%|█ | 52/500 [00:04<00:38, 11.52it/s] 11%|█ | 54/500 [00:04<00:37, 11.81it/s] 11%|█ | 56/500 [00:04<00:36, 12.12it/s] 12%|█▏ | 58/500 [00:05<00:35, 12.57it/s] 12%|█▏ | 60/500 [00:05<00:37, 11.77it/s] 12%|█▏ | 62/500 [00:05<00:37, 11.73it/s] 13%|█▎ | 64/500 [00:05<00:35, 12.22it/s] 13%|█▎ | 66/500 [00:05<00:37, 11.63it/s] 14%|█▎ | 68/500 [00:05<00:34, 12.43it/s] 14%|█▍ | 70/500 [00:06<00:33, 12.65it/s] 14%|█▍ | 72/500 [00:06<00:36, 11.86it/s] 15%|█▍ | 74/500 [00:06<00:34, 12.23it/s] 15%|█▌ | 76/500 [00:06<00:35, 12.09it/s] 16%|█▌ | 78/500 [00:06<00:35, 11.83it/s] 16%|█▌ | 80/500 [00:06<00:33, 12.65it/s] 16%|█▋ | 82/500 [00:07<00:31, 13.17it/s] 17%|█▋ | 84/500 [00:07<00:32, 12.97it/s] 17%|█▋ | 86/500 [00:07<00:32, 12.60it/s] 18%|█▊ | 88/500 [00:07<00:30, 13.44it/s] 18%|█▊ | 90/500 [00:07<00:31, 12.98it/s] 18%|█▊ | 92/500 [00:07<00:31, 13.04it/s] 19%|█▉ | 94/500 [00:07<00:32, 12.43it/s] 19%|█▉ | 96/500 [00:08<00:33, 11.89it/s] 20%|█▉ | 98/500 [00:08<00:36, 11.07it/s] 20%|██ | 100/500 [00:08<00:35, 11.41it/s] 20%|██ | 102/500 [00:08<00:34, 11.60it/s] 21%|██ | 104/500 [00:08<00:33, 11.77it/s] 21%|██ | 106/500 [00:09<00:32, 11.99it/s] 22%|██▏ | 108/500 [00:09<00:31, 12.43it/s] 22%|██▏ | 110/500 [00:09<00:32, 11.95it/s] 22%|██▏ | 112/500 [00:09<00:31, 12.46it/s] 23%|██▎ | 114/500 [00:09<00:31, 12.37it/s] 23%|██▎ | 116/500 [00:09<00:30, 12.54it/s] 24%|██▎ | 118/500 [00:10<00:32, 11.68it/s] 24%|██▍ | 120/500 [00:10<00:32, 11.84it/s] 24%|██▍ | 122/500 [00:10<00:33, 11.41it/s] 25%|██▍ | 124/500 [00:10<00:31, 11.98it/s] 25%|██▌ | 126/500 [00:10<00:32, 11.34it/s] 26%|██▌ | 128/500 [00:10<00:32, 11.30it/s] 26%|██▌ | 130/500 [00:11<00:30, 11.95it/s] 26%|██▋ | 132/500 [00:11<00:30, 11.99it/s] 27%|██▋ | 134/500 [00:11<00:30, 11.90it/s] 27%|██▋ | 136/500 [00:11<00:28, 12.58it/s] 28%|██▊ | 138/500 [00:11<00:28, 12.64it/s] 28%|██▊ | 140/500 [00:11<00:28, 12.76it/s] 28%|██▊ | 142/500 [00:12<00:30, 11.75it/s] 29%|██▉ | 144/500 [00:12<00:28, 12.70it/s] 29%|██▉ | 146/500 [00:12<00:27, 12.79it/s] 30%|██▉ | 148/500 [00:12<00:27, 12.96it/s] 30%|███ | 150/500 [00:12<00:28, 12.38it/s] 30%|███ | 152/500 [00:12<00:25, 13.49it/s] 31%|███ | 154/500 [00:12<00:26, 13.02it/s] 31%|███ | 156/500 [00:13<00:27, 12.60it/s] 32%|███▏ | 158/500 [00:13<00:29, 11.76it/s] 32%|███▏ | 160/500 [00:13<00:29, 11.69it/s] 32%|███▏ | 162/500 [00:13<00:26, 12.55it/s] 33%|███▎ | 164/500 [00:13<00:26, 12.75it/s] 33%|███▎ | 166/500 [00:13<00:26, 12.43it/s] 34%|███▎ | 168/500 [00:14<00:27, 11.97it/s] 34%|███▍ | 170/500 [00:14<00:27, 11.94it/s] 34%|███▍ | 172/500 [00:14<00:27, 11.89it/s] 35%|███▍ | 174/500 [00:14<00:27, 11.71it/s] 35%|███▌ | 176/500 [00:14<00:27, 11.95it/s] 36%|███▌ | 178/500 [00:14<00:26, 12.21it/s] 36%|███▌ | 180/500 [00:15<00:25, 12.79it/s] 36%|███▋ | 182/500 [00:15<00:25, 12.24it/s] 37%|███▋ | 184/500 [00:15<00:25, 12.42it/s] 37%|███▋ | 186/500 [00:15<00:24, 12.86it/s] 38%|███▊ | 188/500 [00:15<00:26, 11.92it/s] 38%|███▊ | 190/500 [00:15<00:24, 12.43it/s] 38%|███▊ | 192/500 [00:16<00:25, 12.15it/s] 39%|███▉ | 194/500 [00:16<00:25, 12.20it/s] 39%|███▉ | 196/500 [00:16<00:26, 11.66it/s] 40%|███▉ | 198/500 [00:16<00:25, 11.92it/s] 40%|████ | 200/500 [00:16<00:25, 11.57it/s] 40%|████ | 202/500 [00:16<00:24, 11.99it/s] 41%|████ | 204/500 [00:17<00:24, 11.94it/s] 41%|████ | 206/500 [00:17<00:23, 12.69it/s] 42%|████▏ | 208/500 [00:17<00:22, 12.89it/s] 42%|████▏ | 210/500 [00:17<00:22, 12.98it/s] 42%|████▏ | 212/500 [00:17<00:22, 12.89it/s] 43%|████▎ | 214/500 [00:17<00:21, 13.50it/s] 43%|████▎ | 216/500 [00:17<00:21, 13.23it/s] 44%|████▎ | 218/500 [00:18<00:22, 12.61it/s] 44%|████▍ | 220/500 [00:18<00:21, 12.88it/s] 44%|████▍ | 222/500 [00:18<00:20, 13.46it/s] 45%|████▍ | 224/500 [00:18<00:21, 12.85it/s] 45%|████▌ | 226/500 [00:18<00:21, 12.62it/s] 46%|████▌ | 228/500 [00:18<00:22, 12.23it/s] 46%|████▌ | 230/500 [00:19<00:21, 12.33it/s] 46%|████▋ | 232/500 [00:19<00:21, 12.22it/s] 47%|████▋ | 234/500 [00:19<00:20, 13.06it/s] 47%|████▋ | 236/500 [00:19<00:20, 13.02it/s] 48%|████▊ | 238/500 [00:19<00:19, 13.40it/s] 48%|████▊ | 240/500 [00:19<00:20, 12.88it/s] 48%|████▊ | 242/500 [00:20<00:21, 12.25it/s] 49%|████▉ | 244/500 [00:20<00:21, 12.13it/s] 49%|████▉ | 246/500 [00:20<00:21, 11.76it/s] 50%|████▉ | 248/500 [00:20<00:22, 11.44it/s] 50%|█████ | 250/500 [00:20<00:21, 11.48it/s] 50%|█████ | 252/500 [00:20<00:21, 11.66it/s] 51%|█████ | 254/500 [00:21<00:19, 12.54it/s] 51%|█████ | 256/500 [00:21<00:19, 12.35it/s] 52%|█████▏ | 258/500 [00:21<00:19, 12.51it/s] 52%|█████▏ | 260/500 [00:21<00:20, 11.95it/s] 52%|█████▏ | 262/500 [00:21<00:19, 12.51it/s] 53%|█████▎ | 264/500 [00:21<00:19, 11.95it/s] 53%|█████▎ | 266/500 [00:22<00:20, 11.55it/s] 54%|█████▎ | 268/500 [00:22<00:19, 11.93it/s] 54%|█████▍ | 270/500 [00:22<00:18, 12.21it/s] 54%|█████▍ | 272/500 [00:22<00:19, 11.82it/s] 55%|█████▍ | 274/500 [00:22<00:19, 11.89it/s] 55%|█████▌ | 276/500 [00:22<00:19, 11.30it/s] 56%|█████▌ | 278/500 [00:23<00:19, 11.39it/s] 56%|█████▌ | 280/500 [00:23<00:18, 11.90it/s] 56%|█████▋ | 282/500 [00:23<00:17, 12.59it/s] 57%|█████▋ | 284/500 [00:23<00:19, 10.83it/s] 57%|█████▋ | 286/500 [00:23<00:24, 8.68it/s] 57%|█████▋ | 287/500 [00:24<00:29, 7.27it/s] 58%|█████▊ | 288/500 [00:24<00:33, 6.42it/s] 58%|█████▊ | 289/500 [00:24<00:34, 6.19it/s] 58%|█████▊ | 290/500 [00:24<00:31, 6.64it/s] 58%|█████▊ | 291/500 [00:24<00:30, 6.94it/s] 58%|█████▊ | 292/500 [00:24<00:29, 7.02it/s] 59%|█████▊ | 293/500 [00:25<00:28, 7.26it/s] 59%|█████▉ | 294/500 [00:25<00:28, 7.24it/s] 59%|█████▉ | 295/500 [00:25<00:26, 7.70it/s] 59%|█████▉ | 296/500 [00:25<00:25, 7.90it/s] 59%|█████▉ | 297/500 [00:25<00:25, 8.11it/s] 60%|█████▉ | 298/500 [00:25<00:25, 7.91it/s] 60%|█████▉ | 299/500 [00:25<00:25, 8.00it/s] 60%|██████ | 300/500 [00:25<00:25, 7.73it/s] 60%|██████ | 301/500 [00:26<00:26, 7.65it/s] 60%|██████ | 302/500 [00:26<00:25, 7.86it/s] 61%|██████ | 303/500 [00:26<00:24, 7.92it/s] 61%|██████ | 304/500 [00:26<00:24, 7.94it/s] 61%|██████ | 305/500 [00:26<00:24, 8.08it/s] 61%|██████ | 306/500 [00:26<00:24, 7.94it/s] 61%|██████▏ | 307/500 [00:26<00:24, 7.74it/s] 62%|██████▏ | 309/500 [00:27<00:21, 9.05it/s] 62%|██████▏ | 310/500 [00:27<00:21, 8.67it/s] 62%|██████▏ | 311/500 [00:27<00:23, 8.18it/s] 63%|██████▎ | 313/500 [00:27<00:20, 9.15it/s] 63%|██████▎ | 314/500 [00:27<00:20, 9.15it/s] 63%|██████▎ | 315/500 [00:27<00:21, 8.72it/s] 63%|██████▎ | 316/500 [00:27<00:22, 8.36it/s] 63%|██████▎ | 317/500 [00:27<00:21, 8.58it/s] 64%|██████▎ | 318/500 [00:28<00:20, 8.85it/s] 64%|██████▍ | 319/500 [00:28<00:21, 8.28it/s] 64%|██████▍ | 320/500 [00:28<00:23, 7.67it/s] 64%|██████▍ | 321/500 [00:28<00:22, 8.00it/s] 64%|██████▍ | 322/500 [00:28<00:21, 8.47it/s] 65%|██████▍ | 323/500 [00:28<00:21, 8.31it/s] 65%|██████▍ | 324/500 [00:28<00:21, 8.14it/s] 65%|██████▌ | 325/500 [00:28<00:21, 8.30it/s] 65%|██████▌ | 326/500 [00:29<00:21, 8.04it/s] 66%|██████▌ | 328/500 [00:29<00:19, 9.00it/s] 66%|██████▌ | 329/500 [00:29<00:19, 8.90it/s] 66%|██████▌ | 330/500 [00:29<00:20, 8.36it/s] 66%|██████▌ | 331/500 [00:29<00:19, 8.64it/s] 66%|██████▋ | 332/500 [00:29<00:19, 8.43it/s] 67%|██████▋ | 333/500 [00:29<00:20, 8.10it/s] 67%|██████▋ | 334/500 [00:30<00:19, 8.33it/s] 67%|██████▋ | 335/500 [00:30<00:19, 8.26it/s] 67%|██████▋ | 336/500 [00:30<00:21, 7.69it/s] 67%|██████▋ | 337/500 [00:30<00:21, 7.57it/s] 68%|██████▊ | 338/500 [00:30<00:21, 7.40it/s] 68%|██████▊ | 339/500 [00:30<00:21, 7.38it/s] 68%|██████▊ | 340/500 [00:30<00:21, 7.46it/s] 68%|██████▊ | 341/500 [00:30<00:20, 7.88it/s] 68%|██████▊ | 342/500 [00:31<00:21, 7.48it/s] 69%|██████▊ | 343/500 [00:31<00:19, 7.92it/s] 69%|██████▉ | 344/500 [00:31<00:19, 7.85it/s] 69%|██████▉ | 345/500 [00:31<00:19, 7.81it/s] 69%|██████▉ | 346/500 [00:31<00:20, 7.50it/s] 69%|██████▉ | 347/500 [00:31<00:21, 7.21it/s] 70%|██████▉ | 348/500 [00:31<00:19, 7.84it/s] 70%|██████▉ | 349/500 [00:32<00:19, 7.92it/s] 70%|███████ | 350/500 [00:32<00:19, 7.73it/s] 70%|███████ | 351/500 [00:32<00:19, 7.67it/s] 70%|███████ | 352/500 [00:32<00:19, 7.60it/s] 71%|███████ | 353/500 [00:32<00:19, 7.54it/s] 71%|███████ | 354/500 [00:32<00:18, 7.77it/s] 71%|███████ | 356/500 [00:32<00:14, 9.89it/s] 72%|███████▏ | 358/500 [00:32<00:12, 11.01it/s] 72%|███████▏ | 360/500 [00:33<00:11, 12.14it/s] 72%|███████▏ | 362/500 [00:33<00:11, 12.08it/s] 73%|███████▎ | 364/500 [00:33<00:10, 12.92it/s] 73%|███████▎ | 366/500 [00:33<00:11, 12.05it/s] 74%|███████▎ | 368/500 [00:33<00:10, 12.48it/s] 74%|███████▍ | 370/500 [00:33<00:10, 12.57it/s] 74%|███████▍ | 372/500 [00:34<00:10, 12.34it/s] 75%|███████▍ | 374/500 [00:34<00:10, 12.10it/s] 75%|███████▌ | 376/500 [00:34<00:10, 12.14it/s] 76%|███████▌ | 378/500 [00:34<00:09, 12.24it/s] 76%|███████▌ | 380/500 [00:34<00:09, 12.60it/s] 76%|███████▋ | 382/500 [00:34<00:08, 13.22it/s] 77%|███████▋ | 384/500 [00:34<00:08, 13.38it/s] 77%|███████▋ | 386/500 [00:35<00:08, 13.80it/s] 78%|███████▊ | 388/500 [00:35<00:08, 12.85it/s] 78%|███████▊ | 390/500 [00:35<00:08, 13.01it/s] 78%|███████▊ | 392/500 [00:35<00:08, 13.18it/s] 79%|███████▉ | 394/500 [00:35<00:08, 12.43it/s] 79%|███████▉ | 396/500 [00:35<00:08, 12.09it/s] 80%|███████▉ | 398/500 [00:36<00:08, 12.45it/s] 80%|████████ | 400/500 [00:36<00:08, 11.70it/s] 80%|████████ | 402/500 [00:36<00:08, 11.93it/s] 81%|████████ | 404/500 [00:36<00:08, 11.99it/s] 81%|████████ | 406/500 [00:36<00:07, 12.25it/s] 82%|████████▏ | 408/500 [00:36<00:07, 12.00it/s] 82%|████████▏ | 410/500 [00:37<00:07, 12.04it/s] 82%|████████▏ | 412/500 [00:37<00:07, 11.88it/s] 83%|████████▎ | 414/500 [00:37<00:07, 11.50it/s] 83%|████████▎ | 416/500 [00:37<00:07, 11.93it/s] 84%|████████▎ | 418/500 [00:37<00:06, 12.21it/s] 84%|████████▍ | 420/500 [00:37<00:06, 12.94it/s] 84%|████████▍ | 422/500 [00:38<00:05, 13.52it/s] 85%|████████▍ | 424/500 [00:38<00:06, 12.56it/s] 85%|████████▌ | 426/500 [00:38<00:05, 12.92it/s] 86%|████████▌ | 428/500 [00:38<00:05, 12.43it/s] 86%|████████▌ | 430/500 [00:38<00:05, 12.28it/s] 86%|████████▋ | 432/500 [00:38<00:05, 12.36it/s] 87%|████████▋ | 434/500 [00:39<00:05, 12.09it/s] 87%|████████▋ | 436/500 [00:39<00:05, 11.59it/s] 88%|████████▊ | 438/500 [00:39<00:05, 11.91it/s] 88%|████████▊ | 440/500 [00:39<00:05, 11.95it/s] 88%|████████▊ | 442/500 [00:39<00:04, 11.79it/s] 89%|████████▉ | 444/500 [00:39<00:04, 12.03it/s] 89%|████████▉ | 446/500 [00:40<00:04, 12.00it/s] 90%|████████▉ | 448/500 [00:40<00:04, 12.71it/s] 90%|█████████ | 450/500 [00:40<00:03, 13.02it/s] 90%|█████████ | 452/500 [00:40<00:03, 12.07it/s] 91%|█████████ | 454/500 [00:40<00:04, 11.05it/s] 91%|█████████ | 456/500 [00:40<00:03, 11.15it/s] 92%|█████████▏| 458/500 [00:41<00:03, 11.40it/s] 92%|█████████▏| 460/500 [00:41<00:03, 12.14it/s] 92%|█████████▏| 462/500 [00:41<00:03, 12.19it/s] 93%|█████████▎| 464/500 [00:41<00:02, 12.19it/s] 93%|█████████▎| 466/500 [00:41<00:02, 12.39it/s] 94%|█████████▎| 468/500 [00:41<00:02, 12.95it/s] 94%|█████████▍| 470/500 [00:41<00:02, 13.31it/s] 94%|█████████▍| 472/500 [00:42<00:02, 13.65it/s] 95%|█████████▍| 474/500 [00:42<00:01, 14.07it/s] 95%|█████████▌| 476/500 [00:42<00:01, 12.85it/s] 96%|█████████▌| 478/500 [00:42<00:01, 13.28it/s] 96%|█████████▌| 480/500 [00:42<00:01, 12.79it/s] 96%|█████████▋| 482/500 [00:42<00:01, 12.33it/s] 97%|█████████▋| 484/500 [00:43<00:01, 12.30it/s] 97%|█████████▋| 486/500 [00:43<00:01, 12.18it/s] 98%|█████████▊| 488/500 [00:43<00:00, 12.38it/s] 98%|█████████▊| 490/500 [00:43<00:00, 13.48it/s] 98%|█████████▊| 492/500 [00:43<00:00, 14.15it/s] 99%|█████████▉| 494/500 [00:43<00:00, 13.83it/s] 99%|█████████▉| 496/500 [00:43<00:00, 13.02it/s] 100%|█████████▉| 498/500 [00:44<00:00, 12.67it/s] 100%|██████████| 500/500 [00:44<00:00, 11.28it/s] 90%|█████████ | 9/10 [05:44<00:38, 38.72s/it] 0%| | 0/500 [00:00<?, ?it/s] 0%| | 2/500 [00:00<00:45, 10.84it/s] 1%| | 4/500 [00:00<00:42, 11.77it/s] 1%| | 6/500 [00:00<00:42, 11.60it/s] 2%|▏ | 8/500 [00:00<00:41, 11.97it/s] 2%|▏ | 10/500 [00:00<00:39, 12.45it/s] 2%|▏ | 12/500 [00:00<00:38, 12.82it/s] 3%|▎ | 14/500 [00:01<00:37, 12.97it/s] 3%|▎ | 16/500 [00:01<00:39, 12.40it/s] 4%|▎ | 18/500 [00:01<00:37, 12.72it/s] 4%|▍ | 20/500 [00:01<00:38, 12.56it/s] 4%|▍ | 22/500 [00:01<00:38, 12.38it/s] 5%|▍ | 24/500 [00:01<00:37, 12.68it/s] 5%|▌ | 26/500 [00:02<00:36, 12.94it/s] 6%|▌ | 28/500 [00:02<00:35, 13.14it/s] 6%|▌ | 30/500 [00:02<00:35, 13.11it/s] 6%|▋ | 32/500 [00:02<00:36, 12.90it/s] 7%|▋ | 34/500 [00:02<00:35, 13.08it/s] 7%|▋ | 36/500 [00:02<00:35, 13.24it/s] 8%|▊ | 38/500 [00:02<00:35, 13.19it/s] 8%|▊ | 40/500 [00:03<00:35, 12.89it/s] 8%|▊ | 42/500 [00:03<00:35, 12.80it/s] 9%|▉ | 44/500 [00:03<00:36, 12.49it/s] 9%|▉ | 46/500 [00:03<00:34, 13.11it/s] 10%|▉ | 48/500 [00:03<00:37, 12.08it/s] 10%|█ | 50/500 [00:03<00:35, 12.53it/s] 10%|█ | 52/500 [00:04<00:34, 12.86it/s] 11%|█ | 54/500 [00:04<00:35, 12.57it/s] 11%|█ | 56/500 [00:04<00:36, 12.25it/s] 12%|█▏ | 58/500 [00:04<00:36, 12.19it/s] 12%|█▏ | 60/500 [00:04<00:36, 12.03it/s] 12%|█▏ | 62/500 [00:04<00:35, 12.41it/s] 13%|█▎ | 64/500 [00:05<00:36, 11.94it/s] 13%|█▎ | 66/500 [00:05<00:36, 12.03it/s] 14%|█▎ | 68/500 [00:05<00:35, 12.15it/s] 14%|█▍ | 70/500 [00:05<00:33, 12.89it/s] 14%|█▍ | 72/500 [00:05<00:32, 13.09it/s] 15%|█▍ | 74/500 [00:05<00:33, 12.56it/s] 15%|█▌ | 76/500 [00:06<00:33, 12.63it/s] 16%|█▌ | 78/500 [00:06<00:34, 12.23it/s] 16%|█▌ | 80/500 [00:06<00:34, 12.14it/s] 16%|█▋ | 82/500 [00:06<00:34, 12.00it/s] 17%|█▋ | 84/500 [00:06<00:33, 12.39it/s] 17%|█▋ | 86/500 [00:06<00:32, 12.66it/s] 18%|█▊ | 88/500 [00:07<00:32, 12.54it/s] 18%|█▊ | 90/500 [00:07<00:32, 12.51it/s] 18%|█▊ | 92/500 [00:07<00:34, 11.91it/s] 19%|█▉ | 94/500 [00:07<00:33, 12.03it/s] 19%|█▉ | 96/500 [00:07<00:32, 12.30it/s] 20%|█▉ | 98/500 [00:07<00:31, 12.70it/s] 20%|██ | 100/500 [00:08<00:32, 12.47it/s] 20%|██ | 102/500 [00:08<00:31, 12.82it/s] 21%|██ | 104/500 [00:08<00:30, 13.08it/s] 21%|██ | 106/500 [00:08<00:29, 13.15it/s] 22%|██▏ | 108/500 [00:08<00:29, 13.43it/s] 22%|██▏ | 110/500 [00:08<00:29, 13.37it/s] 22%|██▏ | 112/500 [00:08<00:29, 13.10it/s] 23%|██▎ | 114/500 [00:09<00:29, 12.96it/s] 23%|██▎ | 116/500 [00:09<00:29, 13.11it/s] 24%|██▎ | 118/500 [00:09<00:28, 13.55it/s] 24%|██▍ | 120/500 [00:09<00:27, 13.75it/s] 24%|██▍ | 122/500 [00:09<00:27, 13.82it/s] 25%|██▍ | 124/500 [00:09<00:28, 13.39it/s] 25%|██▌ | 126/500 [00:09<00:27, 13.46it/s] 26%|██▌ | 128/500 [00:10<00:28, 13.20it/s] 26%|██▌ | 130/500 [00:10<00:27, 13.30it/s] 26%|██▋ | 132/500 [00:10<00:27, 13.26it/s] 27%|██▋ | 134/500 [00:10<00:27, 13.19it/s] 27%|██▋ | 136/500 [00:10<00:27, 13.11it/s] 28%|██▊ | 138/500 [00:10<00:28, 12.75it/s] 28%|██▊ | 140/500 [00:11<00:29, 12.18it/s] 28%|██▊ | 142/500 [00:11<00:29, 12.18it/s] 29%|██▉ | 144/500 [00:11<00:28, 12.38it/s] 29%|██▉ | 146/500 [00:11<00:26, 13.15it/s] 30%|██▉ | 148/500 [00:11<00:27, 12.82it/s] 30%|███ | 150/500 [00:11<00:27, 12.89it/s] 30%|███ | 152/500 [00:11<00:28, 12.30it/s] 31%|███ | 154/500 [00:12<00:27, 12.58it/s] 31%|███ | 156/500 [00:12<00:26, 12.98it/s] 32%|███▏ | 158/500 [00:12<00:27, 12.55it/s] 32%|███▏ | 160/500 [00:12<00:26, 12.86it/s] 32%|███▏ | 162/500 [00:12<00:24, 13.59it/s] 33%|███▎ | 164/500 [00:12<00:25, 13.06it/s] 33%|███▎ | 166/500 [00:13<00:27, 12.11it/s] 34%|███▎ | 168/500 [00:13<00:26, 12.41it/s] 34%|███▍ | 170/500 [00:13<00:27, 12.15it/s] 34%|███▍ | 172/500 [00:13<00:26, 12.50it/s] 35%|███▍ | 174/500 [00:13<00:26, 12.34it/s] 35%|███▌ | 176/500 [00:13<00:26, 12.06it/s] 36%|███▌ | 178/500 [00:14<00:25, 12.42it/s] 36%|███▌ | 180/500 [00:14<00:24, 13.08it/s] 36%|███▋ | 182/500 [00:14<00:24, 13.16it/s] 37%|███▋ | 184/500 [00:14<00:24, 12.75it/s] 37%|███▋ | 186/500 [00:14<00:24, 12.84it/s] 38%|███▊ | 188/500 [00:14<00:24, 12.60it/s] 38%|███▊ | 190/500 [00:15<00:25, 12.08it/s] 38%|███▊ | 192/500 [00:15<00:26, 11.68it/s] 39%|███▉ | 194/500 [00:15<00:25, 12.15it/s] 39%|███▉ | 196/500 [00:15<00:24, 12.37it/s] 40%|███▉ | 198/500 [00:15<00:24, 12.19it/s] 40%|████ | 200/500 [00:15<00:23, 12.71it/s] 40%|████ | 202/500 [00:15<00:23, 12.47it/s] 41%|████ | 204/500 [00:16<00:23, 12.67it/s] 41%|████ | 206/500 [00:16<00:23, 12.76it/s] 42%|████▏ | 208/500 [00:16<00:23, 12.52it/s] 42%|████▏ | 210/500 [00:16<00:23, 12.54it/s] 42%|████▏ | 212/500 [00:16<00:21, 13.26it/s] 43%|████▎ | 214/500 [00:16<00:21, 13.21it/s] 43%|████▎ | 216/500 [00:17<00:21, 13.13it/s] 44%|████▎ | 218/500 [00:17<00:22, 12.78it/s] 44%|████▍ | 220/500 [00:17<00:21, 12.98it/s] 44%|████▍ | 222/500 [00:17<00:20, 13.56it/s] 45%|████▍ | 224/500 [00:17<00:20, 13.24it/s] 45%|████▌ | 226/500 [00:17<00:21, 12.96it/s] 46%|████▌ | 228/500 [00:18<00:22, 12.15it/s] 46%|████▌ | 230/500 [00:18<00:22, 11.89it/s] 46%|████▋ | 232/500 [00:18<00:21, 12.47it/s] 47%|████▋ | 234/500 [00:18<00:20, 12.69it/s] 47%|████▋ | 236/500 [00:18<00:20, 12.61it/s] 48%|████▊ | 238/500 [00:18<00:20, 13.07it/s] 48%|████▊ | 240/500 [00:18<00:20, 12.82it/s] 48%|████▊ | 242/500 [00:19<00:20, 12.88it/s] 49%|████▉ | 244/500 [00:19<00:19, 12.81it/s] 49%|████▉ | 246/500 [00:19<00:20, 12.43it/s] 50%|████▉ | 248/500 [00:19<00:20, 12.46it/s] 50%|█████ | 250/500 [00:19<00:19, 12.53it/s] 50%|█████ | 252/500 [00:19<00:20, 12.25it/s] 51%|█████ | 254/500 [00:20<00:19, 12.59it/s] 51%|█████ | 256/500 [00:20<00:20, 12.17it/s] 52%|█████▏ | 258/500 [00:20<00:20, 11.97it/s] 52%|█████▏ | 260/500 [00:20<00:19, 12.01it/s] 52%|█████▏ | 262/500 [00:20<00:20, 11.36it/s] 53%|█████▎ | 264/500 [00:20<00:20, 11.53it/s] 53%|█████▎ | 266/500 [00:21<00:19, 11.76it/s] 54%|█████▎ | 268/500 [00:21<00:19, 11.91it/s] 54%|█████▍ | 270/500 [00:21<00:19, 12.10it/s] 54%|█████▍ | 272/500 [00:21<00:18, 12.24it/s] 55%|█████▍ | 274/500 [00:21<00:18, 12.44it/s] 55%|█████▌ | 276/500 [00:21<00:18, 12.26it/s] 56%|█████▌ | 278/500 [00:22<00:18, 12.33it/s] 56%|█████▌ | 280/500 [00:22<00:17, 12.47it/s] 56%|█████▋ | 282/500 [00:22<00:17, 12.23it/s] 57%|█████▋ | 284/500 [00:22<00:17, 12.40it/s] 57%|█████▋ | 286/500 [00:22<00:17, 12.19it/s] 58%|█████▊ | 288/500 [00:22<00:17, 11.92it/s] 58%|█████▊ | 290/500 [00:23<00:17, 11.93it/s] 58%|█████▊ | 292/500 [00:23<00:16, 12.35it/s] 59%|█████▉ | 294/500 [00:23<00:16, 12.13it/s] 59%|█████▉ | 296/500 [00:23<00:16, 12.54it/s] 60%|█████▉ | 298/500 [00:23<00:16, 12.25it/s] 60%|██████ | 300/500 [00:23<00:16, 12.44it/s] 60%|██████ | 302/500 [00:24<00:16, 12.12it/s] 61%|██████ | 304/500 [00:24<00:16, 11.95it/s] 61%|██████ | 306/500 [00:24<00:16, 11.72it/s] 62%|██████▏ | 308/500 [00:24<00:15, 12.23it/s] 62%|██████▏ | 310/500 [00:24<00:15, 12.30it/s] 62%|██████▏ | 312/500 [00:24<00:14, 12.59it/s] 63%|██████▎ | 314/500 [00:24<00:14, 12.80it/s] 63%|██████▎ | 316/500 [00:25<00:13, 13.18it/s] 64%|██████▎ | 318/500 [00:25<00:13, 13.10it/s] 64%|██████▍ | 320/500 [00:25<00:14, 12.48it/s] 64%|██████▍ | 322/500 [00:25<00:14, 12.33it/s] 65%|██████▍ | 324/500 [00:25<00:14, 12.03it/s] 65%|██████▌ | 326/500 [00:25<00:13, 12.55it/s] 66%|██████▌ | 328/500 [00:26<00:13, 12.39it/s] 66%|██████▌ | 330/500 [00:26<00:13, 12.52it/s] 66%|██████▋ | 332/500 [00:26<00:13, 12.69it/s] 67%|██████▋ | 334/500 [00:26<00:13, 12.23it/s] 67%|██████▋ | 336/500 [00:26<00:12, 12.91it/s] 68%|██████▊ | 338/500 [00:26<00:12, 12.99it/s] 68%|██████▊ | 340/500 [00:27<00:12, 12.88it/s] 68%|██████▊ | 342/500 [00:27<00:12, 12.98it/s] 69%|██████▉ | 344/500 [00:27<00:12, 12.50it/s] 69%|██████▉ | 346/500 [00:27<00:12, 12.33it/s] 70%|██████▉ | 348/500 [00:27<00:11, 12.77it/s] 70%|███████ | 350/500 [00:27<00:11, 12.80it/s] 70%|███████ | 352/500 [00:27<00:11, 12.77it/s] 71%|███████ | 354/500 [00:28<00:11, 12.60it/s] 71%|███████ | 356/500 [00:28<00:10, 13.23it/s] 72%|███████▏ | 358/500 [00:28<00:11, 12.82it/s] 72%|███████▏ | 360/500 [00:28<00:10, 12.82it/s] 72%|███████▏ | 362/500 [00:28<00:10, 13.00it/s] 73%|███████▎ | 364/500 [00:28<00:10, 13.41it/s] 73%|███████▎ | 366/500 [00:29<00:09, 13.74it/s] 74%|███████▎ | 368/500 [00:29<00:09, 13.99it/s] 74%|███████▍ | 370/500 [00:29<00:10, 12.89it/s] 74%|███████▍ | 372/500 [00:29<00:10, 12.68it/s] 75%|███████▍ | 374/500 [00:29<00:09, 12.77it/s] 75%|███████▌ | 376/500 [00:29<00:09, 13.23it/s] 76%|███████▌ | 378/500 [00:29<00:09, 13.45it/s] 76%|███████▌ | 380/500 [00:30<00:09, 13.08it/s] 76%|███████▋ | 382/500 [00:30<00:09, 12.99it/s] 77%|███████▋ | 384/500 [00:30<00:09, 12.49it/s] 77%|███████▋ | 386/500 [00:30<00:09, 12.50it/s] 78%|███████▊ | 388/500 [00:30<00:08, 12.74it/s] 78%|███████▊ | 390/500 [00:30<00:08, 13.67it/s] 78%|███████▊ | 392/500 [00:31<00:07, 14.23it/s] 79%|███████▉ | 394/500 [00:31<00:07, 13.63it/s] 79%|███████▉ | 396/500 [00:31<00:07, 13.77it/s] 80%|███████▉ | 398/500 [00:31<00:07, 13.17it/s] 80%|████████ | 400/500 [00:31<00:07, 12.60it/s] 80%|████████ | 402/500 [00:31<00:07, 12.60it/s] 81%|████████ | 404/500 [00:32<00:07, 12.09it/s] 81%|████████ | 406/500 [00:32<00:07, 12.21it/s] 82%|████████▏ | 408/500 [00:32<00:07, 12.67it/s] 82%|████████▏ | 410/500 [00:32<00:07, 12.16it/s] 82%|████████▏ | 412/500 [00:32<00:07, 12.52it/s] 83%|████████▎ | 414/500 [00:32<00:06, 12.44it/s] 83%|████████▎ | 416/500 [00:32<00:06, 12.64it/s] 84%|████████▎ | 418/500 [00:33<00:06, 12.67it/s] 84%|████████▍ | 420/500 [00:33<00:06, 12.34it/s] 84%|████████▍ | 422/500 [00:33<00:06, 12.51it/s] 85%|████████▍ | 424/500 [00:33<00:06, 12.53it/s] 85%|████████▌ | 426/500 [00:33<00:06, 12.23it/s] 86%|████████▌ | 428/500 [00:33<00:05, 12.43it/s] 86%|████████▌ | 430/500 [00:34<00:05, 11.85it/s] 86%|████████▋ | 432/500 [00:34<00:05, 12.15it/s] 87%|████████▋ | 434/500 [00:34<00:05, 11.73it/s] 87%|████████▋ | 436/500 [00:34<00:05, 12.05it/s] 88%|████████▊ | 438/500 [00:34<00:04, 12.77it/s] 88%|████████▊ | 440/500 [00:34<00:04, 12.58it/s] 88%|████████▊ | 442/500 [00:35<00:04, 12.57it/s] 89%|████████▉ | 444/500 [00:35<00:04, 12.32it/s] 89%|████████▉ | 446/500 [00:35<00:04, 12.78it/s] 90%|████████▉ | 448/500 [00:35<00:04, 12.55it/s] 90%|█████████ | 450/500 [00:35<00:03, 12.54it/s] 90%|█████████ | 452/500 [00:35<00:03, 12.71it/s] 91%|█████████ | 454/500 [00:35<00:03, 12.89it/s] 91%|█████████ | 456/500 [00:36<00:03, 12.62it/s] 92%|█████████▏| 458/500 [00:36<00:03, 12.49it/s] 92%|█████████▏| 460/500 [00:36<00:03, 12.87it/s] 92%|█████████▏| 462/500 [00:36<00:02, 13.01it/s] 93%|█████████▎| 464/500 [00:36<00:02, 13.29it/s] 93%|█████████▎| 466/500 [00:36<00:02, 12.61it/s] 94%|█████████▎| 468/500 [00:37<00:02, 12.23it/s] 94%|█████████▍| 470/500 [00:37<00:02, 11.77it/s] 94%|█████████▍| 472/500 [00:37<00:02, 12.24it/s] 95%|█████████▍| 474/500 [00:37<00:02, 12.59it/s] 95%|█████████▌| 476/500 [00:37<00:01, 12.88it/s] 96%|█████████▌| 478/500 [00:37<00:01, 12.75it/s] 96%|█████████▌| 480/500 [00:38<00:01, 12.07it/s] 96%|█████████▋| 482/500 [00:38<00:01, 12.22it/s] 97%|█████████▋| 484/500 [00:38<00:01, 11.84it/s] 97%|█████████▋| 486/500 [00:38<00:01, 12.35it/s] 98%|█████████▊| 488/500 [00:38<00:00, 12.57it/s] 98%|█████████▊| 490/500 [00:38<00:00, 11.95it/s] 98%|█████████▊| 492/500 [00:39<00:00, 11.96it/s] 99%|█████████▉| 494/500 [00:39<00:00, 11.97it/s] 99%|█████████▉| 496/500 [00:39<00:00, 12.13it/s] 100%|█████████▉| 498/500 [00:39<00:00, 12.09it/s] 100%|██████████| 500/500 [00:39<00:00, 12.58it/s] 100%|██████████| 10/10 [06:23<00:00, 38.40s/it]
View first 5 rows of the data
# View the head of the DataFrame
dataset.head()
| features | class | |
|---|---|---|
| 0 | [-665.89154, 142.60606, 18.392824, 25.345766, ... | 1 |
| 1 | [-592.67865, 113.82476, -0.4727389, 24.122704,... | 0 |
| 2 | [-633.1592, 31.215343, 18.35936, 33.875095, 12... | 6 |
| 3 | [-627.3246, 89.33748, 20.073849, 27.20781, 20.... | 7 |
| 4 | [-629.3813, 77.617905, 8.784167, 71.34374, 15.... | 8 |
# Storing the class as int
dataset['class'] = [int(x) for x in dataset['class']]
# Check the frequency of classes in the dataset
dataset['class'].value_counts()
1 500 0 500 6 500 7 500 8 500 5 500 9 500 4 500 3 500 2 500 Name: class, dtype: int64
draw_spectrograms : From the Mel Coefficients we are extracting for a particular audio, this function is creating the 2-D graph of those coefficients with the X-axis representing time and the Y-axis shows the corresponding Mel coefficients in that time step. # A function which returns MFCC
def draw_spectrograms(audio_data, sample_rate):
# Extract features
extracted_features = librosa.feature.mfcc(y = audio_data,
sr = sample_rate,
n_mfcc = 40)
# Return features without scaling
return extracted_features
The very first MFCC coefficient (0th coefficient) does not provide information about the overall shape of the spectrum. It simply communicates a constant offset or the addition of a constant value to the full spectrum. As a result, when performing classification, many practitioners will disregard the initial MFCC. In the images, you can see those represented by blue pixels.
We can plot the MFCCs, but it's difficult to tell what kind of signal is hiding behind such representation.
# Creating subplots
fig, ax = plt.subplots(5, 2, figsize = (15, 30))
# Initializing row and column variables for subplots
row = 0
column = 0
for digit in range(10):
# Get the audio of different classes (0-9)
audio_data, sample_rate = get_audio_raw(digit)
# Extract their MFCC
mfcc = draw_spectrograms(audio_data, sample_rate)
print(f"Shape of MFCC of audio digit {digit} ---> ", mfcc.shape)
# Display the plots and its title
ax[row,column].set_title(f"MFCC of audio class {digit} across time")
librosa.display.specshow(mfcc, sr = 22050, ax = ax[row, column])
# Set X-labels and Y-labels
ax[row,column].set_xlabel("Time")
ax[row,column].set_ylabel("MFCC Coefficients")
# Conditions for positioning of the plots
if column == 1:
column = 0
row += 1
else:
column+=1
plt.tight_layout(pad = 3)
plt.show()
Shape of MFCC of audio digit 0 ---> (40, 34) Shape of MFCC of audio digit 1 ---> (40, 19) Shape of MFCC of audio digit 2 ---> (40, 24) Shape of MFCC of audio digit 3 ---> (40, 27) Shape of MFCC of audio digit 4 ---> (40, 21) Shape of MFCC of audio digit 5 ---> (40, 28) Shape of MFCC of audio digit 6 ---> (40, 31) Shape of MFCC of audio digit 7 ---> (40, 28) Shape of MFCC of audio digit 8 ---> (40, 26) Shape of MFCC of audio digit 9 ---> (40, 25)
Visual Inspection of MFCC Spectrograms:
On inspecting them visually, we can see that there are a lot of deviations from the spectrograms of one audio to another. There are a lot of tiny rectangles and bars whose positions are unique to each audio. So, the Artificial Neural Network should be able to perform decently well in identifying these audios.
# Import train_test_split function
from sklearn.model_selection import train_test_split
X = np.array(dataset['features'].to_list())
Y = np.array(dataset['class'].to_list())
# Create train set and test set
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size = 0.75, shuffle = True, random_state = 8)
# Checking the shape of the data
X_train.shape
(3750, 40)
About the libraries:
Keras: Keras is an open-source deep-learning library in Python. Keras is popular because the API was clean and simple, allowing standard deep learning models to be defined, fit, and evaluated in just a few lines of code.Sklearn :# To create an ANN model
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
# To create a checkpoint and save the best model
from tensorflow.keras.callbacks import ModelCheckpoint
# To load the model
from tensorflow.keras.models import load_model
# To evaluate the model
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import LabelBinarizer
When we convert audios to their corresponding spectrograms, we will have similar spectrograms for similar audios irrespective of who the speaker is, and what their pitch and timber is like. So local spatiality is not going to be a problem, meaning convolutional layers or other such feature extraction layers would be unnecessary on top of our fully connected layers, as they would just be adding to our computational redundancy. That means, a simple Artificial Neural Network (Feedforward Neural Network) should be enough for this use case.
We will use a Sequential model with multiple connected hidden layers, and an output layer that returns a single, continuous value.
# Crete a Sequential Object
model = Sequential()
# Add first layer with 100 neurons to the sequental object
model.add(Dense(100, input_shape = (40, ), activation = 'relu'))
# Add second layer with 100 neurons to the sequental object
model.add(Dense(100, activation = 'relu'))
# Add third layer with 100 neurons to the sequental object
model.add(Dense(100, activation = 'relu'))
# Output layer with 10 neurons as it has 10 classes
model.add(Dense(10, activation = 'softmax'))
# Print Summary of the model
model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 100) 4100
dense_1 (Dense) (None, 100) 10100
dense_2 (Dense) (None, 100) 10100
dense_3 (Dense) (None, 10) 1010
=================================================================
Total params: 25,310
Trainable params: 25,310
Non-trainable params: 0
_________________________________________________________________
# Compile the model
model.compile(loss = 'sparse_categorical_crossentropy',
metrics = ['accuracy'],
optimizer = 'adam')
# Set the number of epochs for training
num_epochs = 100
# Set the batch size for training
batch_size = 32
# Fit the model
model.fit(X_train, Y_train, validation_data = (X_test, Y_test), epochs = num_epochs, batch_size = batch_size, verbose = 1)
Epoch 1/100 118/118 [==============================] - 1s 6ms/step - loss: 4.6833 - accuracy: 0.4021 - val_loss: 0.8707 - val_accuracy: 0.6952 Epoch 2/100 118/118 [==============================] - 0s 3ms/step - loss: 0.6845 - accuracy: 0.7592 - val_loss: 0.3721 - val_accuracy: 0.8824 Epoch 3/100 118/118 [==============================] - 0s 3ms/step - loss: 0.3928 - accuracy: 0.8557 - val_loss: 0.3353 - val_accuracy: 0.8720 Epoch 4/100 118/118 [==============================] - 0s 3ms/step - loss: 0.3252 - accuracy: 0.8848 - val_loss: 0.2370 - val_accuracy: 0.9232 Epoch 5/100 118/118 [==============================] - 0s 3ms/step - loss: 0.2435 - accuracy: 0.9072 - val_loss: 0.3243 - val_accuracy: 0.8808 Epoch 6/100 118/118 [==============================] - 0s 3ms/step - loss: 0.1988 - accuracy: 0.9293 - val_loss: 0.1849 - val_accuracy: 0.9248 Epoch 7/100 118/118 [==============================] - 0s 3ms/step - loss: 0.1380 - accuracy: 0.9507 - val_loss: 0.4215 - val_accuracy: 0.8504 Epoch 8/100 118/118 [==============================] - 0s 3ms/step - loss: 0.1487 - accuracy: 0.9475 - val_loss: 0.2257 - val_accuracy: 0.9296 Epoch 9/100 118/118 [==============================] - 0s 3ms/step - loss: 0.2737 - accuracy: 0.9125 - val_loss: 0.1938 - val_accuracy: 0.9400 Epoch 10/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0915 - accuracy: 0.9669 - val_loss: 0.0733 - val_accuracy: 0.9736 Epoch 11/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0750 - accuracy: 0.9720 - val_loss: 0.1121 - val_accuracy: 0.9584 Epoch 12/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0757 - accuracy: 0.9723 - val_loss: 0.0617 - val_accuracy: 0.9792 Epoch 13/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0625 - accuracy: 0.9813 - val_loss: 0.2596 - val_accuracy: 0.9216 Epoch 14/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0861 - accuracy: 0.9709 - val_loss: 0.1908 - val_accuracy: 0.9328 Epoch 15/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0989 - accuracy: 0.9627 - val_loss: 0.0698 - val_accuracy: 0.9800 Epoch 16/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0546 - accuracy: 0.9824 - val_loss: 0.0694 - val_accuracy: 0.9760 Epoch 17/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0793 - accuracy: 0.9739 - val_loss: 0.0655 - val_accuracy: 0.9776 Epoch 18/100 118/118 [==============================] - 0s 3ms/step - loss: 0.1085 - accuracy: 0.9608 - val_loss: 0.0969 - val_accuracy: 0.9664 Epoch 19/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0799 - accuracy: 0.9723 - val_loss: 0.2657 - val_accuracy: 0.9272 Epoch 20/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0791 - accuracy: 0.9717 - val_loss: 0.1651 - val_accuracy: 0.9504 Epoch 21/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0849 - accuracy: 0.9717 - val_loss: 0.1856 - val_accuracy: 0.9528 Epoch 22/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0668 - accuracy: 0.9736 - val_loss: 0.0856 - val_accuracy: 0.9712 Epoch 23/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0433 - accuracy: 0.9856 - val_loss: 0.0884 - val_accuracy: 0.9712 Epoch 24/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0578 - accuracy: 0.9821 - val_loss: 0.0736 - val_accuracy: 0.9768 Epoch 25/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0967 - accuracy: 0.9680 - val_loss: 0.0993 - val_accuracy: 0.9680 Epoch 26/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0568 - accuracy: 0.9789 - val_loss: 0.0729 - val_accuracy: 0.9752 Epoch 27/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0565 - accuracy: 0.9832 - val_loss: 0.0763 - val_accuracy: 0.9744 Epoch 28/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0373 - accuracy: 0.9856 - val_loss: 0.0511 - val_accuracy: 0.9792 Epoch 29/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0401 - accuracy: 0.9853 - val_loss: 0.0581 - val_accuracy: 0.9760 Epoch 30/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0466 - accuracy: 0.9835 - val_loss: 0.1126 - val_accuracy: 0.9592 Epoch 31/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0635 - accuracy: 0.9787 - val_loss: 0.0500 - val_accuracy: 0.9856 Epoch 32/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0923 - accuracy: 0.9760 - val_loss: 0.0606 - val_accuracy: 0.9784 Epoch 33/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0657 - accuracy: 0.9768 - val_loss: 0.0955 - val_accuracy: 0.9704 Epoch 34/100 118/118 [==============================] - 0s 3ms/step - loss: 0.1111 - accuracy: 0.9651 - val_loss: 0.0628 - val_accuracy: 0.9792 Epoch 35/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0402 - accuracy: 0.9851 - val_loss: 0.1221 - val_accuracy: 0.9560 Epoch 36/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0549 - accuracy: 0.9816 - val_loss: 0.0512 - val_accuracy: 0.9776 Epoch 37/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0379 - accuracy: 0.9872 - val_loss: 0.0474 - val_accuracy: 0.9808 Epoch 38/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0236 - accuracy: 0.9923 - val_loss: 0.0691 - val_accuracy: 0.9752 Epoch 39/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0366 - accuracy: 0.9867 - val_loss: 0.0830 - val_accuracy: 0.9728 Epoch 40/100 118/118 [==============================] - 0s 3ms/step - loss: 0.1293 - accuracy: 0.9635 - val_loss: 0.0582 - val_accuracy: 0.9800 Epoch 41/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0320 - accuracy: 0.9891 - val_loss: 0.0702 - val_accuracy: 0.9776 Epoch 42/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0238 - accuracy: 0.9907 - val_loss: 0.0832 - val_accuracy: 0.9744 Epoch 43/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0224 - accuracy: 0.9915 - val_loss: 0.0565 - val_accuracy: 0.9776 Epoch 44/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0245 - accuracy: 0.9925 - val_loss: 0.0557 - val_accuracy: 0.9760 Epoch 45/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0236 - accuracy: 0.9909 - val_loss: 0.0511 - val_accuracy: 0.9816 Epoch 46/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0169 - accuracy: 0.9947 - val_loss: 0.0391 - val_accuracy: 0.9864 Epoch 47/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0191 - accuracy: 0.9936 - val_loss: 0.2767 - val_accuracy: 0.9472 Epoch 48/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0315 - accuracy: 0.9899 - val_loss: 0.0938 - val_accuracy: 0.9664 Epoch 49/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0375 - accuracy: 0.9875 - val_loss: 0.0644 - val_accuracy: 0.9752 Epoch 50/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0352 - accuracy: 0.9864 - val_loss: 0.0746 - val_accuracy: 0.9776 Epoch 51/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0698 - accuracy: 0.9771 - val_loss: 0.0412 - val_accuracy: 0.9840 Epoch 52/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0392 - accuracy: 0.9864 - val_loss: 0.0902 - val_accuracy: 0.9768 Epoch 53/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0536 - accuracy: 0.9840 - val_loss: 0.1381 - val_accuracy: 0.9552 Epoch 54/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0156 - accuracy: 0.9952 - val_loss: 0.0391 - val_accuracy: 0.9832 Epoch 55/100 118/118 [==============================] - 0s 4ms/step - loss: 0.0184 - accuracy: 0.9933 - val_loss: 0.0676 - val_accuracy: 0.9792 Epoch 56/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0172 - accuracy: 0.9936 - val_loss: 0.1074 - val_accuracy: 0.9712 Epoch 57/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0254 - accuracy: 0.9907 - val_loss: 0.0363 - val_accuracy: 0.9872 Epoch 58/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0144 - accuracy: 0.9955 - val_loss: 0.0398 - val_accuracy: 0.9864 Epoch 59/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0114 - accuracy: 0.9960 - val_loss: 0.0362 - val_accuracy: 0.9856 Epoch 60/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0140 - accuracy: 0.9957 - val_loss: 0.0485 - val_accuracy: 0.9808 Epoch 61/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0210 - accuracy: 0.9933 - val_loss: 0.1248 - val_accuracy: 0.9632 Epoch 62/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0743 - accuracy: 0.9749 - val_loss: 0.3305 - val_accuracy: 0.9264 Epoch 63/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0308 - accuracy: 0.9888 - val_loss: 0.0486 - val_accuracy: 0.9800 Epoch 64/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0126 - accuracy: 0.9949 - val_loss: 0.0558 - val_accuracy: 0.9848 Epoch 65/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0252 - accuracy: 0.9925 - val_loss: 0.0594 - val_accuracy: 0.9840 Epoch 66/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0198 - accuracy: 0.9920 - val_loss: 0.0668 - val_accuracy: 0.9784 Epoch 67/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0187 - accuracy: 0.9923 - val_loss: 0.0554 - val_accuracy: 0.9832 Epoch 68/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0171 - accuracy: 0.9933 - val_loss: 0.0782 - val_accuracy: 0.9792 Epoch 69/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0103 - accuracy: 0.9968 - val_loss: 0.0433 - val_accuracy: 0.9832 Epoch 70/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0084 - accuracy: 0.9973 - val_loss: 0.0397 - val_accuracy: 0.9864 Epoch 71/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0102 - accuracy: 0.9963 - val_loss: 0.0373 - val_accuracy: 0.9856 Epoch 72/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0097 - accuracy: 0.9971 - val_loss: 0.0287 - val_accuracy: 0.9856 Epoch 73/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0044 - accuracy: 0.9981 - val_loss: 0.0339 - val_accuracy: 0.9888 Epoch 74/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0095 - accuracy: 0.9971 - val_loss: 0.0285 - val_accuracy: 0.9872 Epoch 75/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0781 - accuracy: 0.9773 - val_loss: 0.0890 - val_accuracy: 0.9800 Epoch 76/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0194 - accuracy: 0.9939 - val_loss: 0.0726 - val_accuracy: 0.9768 Epoch 77/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0075 - accuracy: 0.9976 - val_loss: 0.0304 - val_accuracy: 0.9888 Epoch 78/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0017 - accuracy: 0.9997 - val_loss: 0.0298 - val_accuracy: 0.9864 Epoch 79/100 118/118 [==============================] - 0s 3ms/step - loss: 6.3725e-04 - accuracy: 1.0000 - val_loss: 0.0393 - val_accuracy: 0.9872 Epoch 80/100 118/118 [==============================] - 0s 3ms/step - loss: 6.6187e-04 - accuracy: 1.0000 - val_loss: 0.0276 - val_accuracy: 0.9880 Epoch 81/100 118/118 [==============================] - 0s 3ms/step - loss: 3.2180e-04 - accuracy: 1.0000 - val_loss: 0.0332 - val_accuracy: 0.9864 Epoch 82/100 118/118 [==============================] - 0s 3ms/step - loss: 3.0186e-04 - accuracy: 1.0000 - val_loss: 0.0280 - val_accuracy: 0.9888 Epoch 83/100 118/118 [==============================] - 0s 3ms/step - loss: 2.6349e-04 - accuracy: 1.0000 - val_loss: 0.0295 - val_accuracy: 0.9872 Epoch 84/100 118/118 [==============================] - 0s 4ms/step - loss: 2.0953e-04 - accuracy: 1.0000 - val_loss: 0.0299 - val_accuracy: 0.9888 Epoch 85/100 118/118 [==============================] - 0s 3ms/step - loss: 1.9458e-04 - accuracy: 1.0000 - val_loss: 0.0259 - val_accuracy: 0.9896 Epoch 86/100 118/118 [==============================] - 0s 3ms/step - loss: 2.2210e-04 - accuracy: 1.0000 - val_loss: 0.0284 - val_accuracy: 0.9880 Epoch 87/100 118/118 [==============================] - 0s 4ms/step - loss: 1.8345e-04 - accuracy: 1.0000 - val_loss: 0.0306 - val_accuracy: 0.9880 Epoch 88/100 118/118 [==============================] - 0s 3ms/step - loss: 1.8389e-04 - accuracy: 1.0000 - val_loss: 0.0294 - val_accuracy: 0.9888 Epoch 89/100 118/118 [==============================] - 0s 3ms/step - loss: 1.4423e-04 - accuracy: 1.0000 - val_loss: 0.0297 - val_accuracy: 0.9888 Epoch 90/100 118/118 [==============================] - 0s 3ms/step - loss: 1.3294e-04 - accuracy: 1.0000 - val_loss: 0.0288 - val_accuracy: 0.9864 Epoch 91/100 118/118 [==============================] - 0s 3ms/step - loss: 1.3376e-04 - accuracy: 1.0000 - val_loss: 0.0313 - val_accuracy: 0.9872 Epoch 92/100 118/118 [==============================] - 0s 3ms/step - loss: 1.2216e-04 - accuracy: 1.0000 - val_loss: 0.0273 - val_accuracy: 0.9888 Epoch 93/100 118/118 [==============================] - 0s 3ms/step - loss: 1.1068e-04 - accuracy: 1.0000 - val_loss: 0.0298 - val_accuracy: 0.9896 Epoch 94/100 118/118 [==============================] - 0s 4ms/step - loss: 1.0460e-04 - accuracy: 1.0000 - val_loss: 0.0291 - val_accuracy: 0.9896 Epoch 95/100 118/118 [==============================] - 0s 3ms/step - loss: 9.4372e-05 - accuracy: 1.0000 - val_loss: 0.0301 - val_accuracy: 0.9896 Epoch 96/100 118/118 [==============================] - 0s 3ms/step - loss: 9.1767e-05 - accuracy: 1.0000 - val_loss: 0.0278 - val_accuracy: 0.9888 Epoch 97/100 118/118 [==============================] - 0s 3ms/step - loss: 8.9083e-05 - accuracy: 1.0000 - val_loss: 0.0275 - val_accuracy: 0.9888 Epoch 98/100 118/118 [==============================] - 0s 3ms/step - loss: 8.1108e-05 - accuracy: 1.0000 - val_loss: 0.0275 - val_accuracy: 0.9888 Epoch 99/100 118/118 [==============================] - 0s 3ms/step - loss: 0.1479 - accuracy: 0.9672 - val_loss: 0.1469 - val_accuracy: 0.9704 Epoch 100/100 118/118 [==============================] - 0s 3ms/step - loss: 0.0488 - accuracy: 0.9837 - val_loss: 0.0607 - val_accuracy: 0.9864
<keras.callbacks.History at 0x7f5a7631a350>
# Make predictions on the test set
Y_pred = model.predict(X_test)
Y_pred = [np.argmax(i) for i in Y_pred]
# Set style as dark
sns.set_style("dark")
# Set figure size
plt.figure(figsize = (15, 8))
# Plot the title
plt.title("CONFUSION MATRIX FOR MNIST AUDIO PREDICTION")
# Confusion matrix
cm = confusion_matrix([int(x) for x in Y_test], Y_pred)
# Plot the confusion matrix as heatmap
sns.heatmap(cm, annot = True, cmap = "cool", fmt = 'g', cbar = False)
# Set X-label and Y-label
plt.xlabel("ACTUAL VALUES")
plt.ylabel("PREDICTED VALUES")
# Show the plot
plt.show()
# Print the metrics
print(classification_report(Y_test, Y_pred))
precision recall f1-score support
0 0.96 0.97 0.96 117
1 0.99 0.99 0.99 113
2 0.94 0.99 0.96 125
3 1.00 0.92 0.96 116
4 1.00 0.99 1.00 125
5 1.00 1.00 1.00 121
6 1.00 1.00 1.00 132
7 0.99 1.00 0.99 142
8 1.00 1.00 1.00 126
9 0.99 0.99 0.99 133
accuracy 0.99 1250
macro avg 0.99 0.99 0.99 1250
weighted avg 0.99 0.99 0.99 1250
Observations: